面试题:预训练和SFT操作有什么不同?
参考答案
预训练(Pre-training)和监督式微调(Supervised Fine-Tuning, SFT)是大型语言模型(Large Language Models, LLMs)开发和应用过程中的两个关键步骤,它们在目标、方法和应用上存在明显的区别:
1)目标差异:
- 预训练:目标是让模型在大量未标记的数据上学习语言的通用特征,如语法、句法、语义等。这个阶段不针对特定的任务,而是为了让模型获得广泛的知识和理解能力。
- SFT:目标是让已经预训练的模型适应特定的任务或领域。通过在有限的标记数据上进行训练,模型可以学习到特定任务的专业知识和细节。
2)数据使用差异:
- 预训练:通常使用大量的未标记文本数据,这些数据可能来自互联网、书籍、文章等。
- SFT:使用相对较少的标记数据,这些数据是针对特定任务的,如特定的问答对、分类标签或序列标注。
3)训练方法差异:
- 预训练:使用自监督学习任务,如掩码语言模型(Masked Language Model, MLM)、下一句预测(Next Sentence Prediction, NSP)等,来让模型预测或生成文本中的缺失部分。
- SFT:使用监督学习,模型根据输入和对应的标签或输出进行训练,以最小化预测误差。
4)模型参数差异:
- 预训练:在预训练阶段,模型的所有参数都可能被更新,以学习语言的通用特征。
- SFT:通常只有部分参数会被更新,特别是与任务相关的顶层或特定层的参数,以适应特定任务。
5)资源需求差异:
- 预训练:需要大量的计算资源和存储空间,因为要处理的数据量巨大。
- SFT:资源需求相对较小,因为使用的是特定任务的较小数据集。
6)应用范围差异:
- 预训练:模型在预训练后可以用于多种不同的下游任务,具有较好的通用性。
- SFT:模型在微调后更擅长处理特定的任务或领域,但可能在其他任务上表现不佳。
7)灵活性和适应性:
- 预训练:模型在预训练阶段具有较高的灵活性,因为它学习了广泛的语言特征。
- SFT:模型在微调后对特定任务的适应性更强,但可能牺牲了一定的灵活性。
8)性能和效率:
- 预训练:模型在预训练后可能在一些任务上表现不佳,需要进一步的微调来提高性能。
- SFT:通过微调,模型在特定任务上的性能通常会有显著提升,效率也更高。
总的来说,预训练是构建强大语言模型的基础,而SFT是使这些模型适应具体应用的关键步骤。
文末
有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】
更多资料分享
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
一、大模型全套的学习路线
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费
】