快速学会一个算法,Transformer!!

今天给大家分享一个强大的算法模型,Transformer

Transformer 是一种基于自注意力机制(Self-Attention)的深度学习架构,最初由 Vaswani 等人在 2017 年的论文《Attention is All You Need》中提出。

Transformer 的核心思想是通过完全基于注意力机制的方式来建模序列关系,而不依赖传统序列模型(如 RNN 和 LSTM)的循环结构,极大提高了训练并行性,在自然语言处理等任务中取得了显著的成果。

在这里插入图片描述

一、Transformer 的架构

Transformer 由编码器(Encoder) 和 解码器(Decoder) 两部分组成。

在这里插入图片描述

编码器(Encoder)

编码器接收输入序列,将其映射为潜在表示。

编码器由多个编码层堆叠组成,每个编码层包含两个子层:

  • 多头自注意力机制(Multi-Head Self-Attention)
  • 前馈神经网络(Feed-Forward Neural Network)
解码器(Decoder)

解码器接收编码器的输出和目标序列,生成最终输出。

它由多个解码层堆叠组成,每个解码层包含三个子层:

  • 多头自注意力机制(Masked Multi-Head Self-Attention)
  • 编码器-解码器注意力机制(Encoder-Decoder Attention)
  • 前馈神经网络(FFN)

在这里插入图片描述

二、核心组件

1.输入嵌入

输入嵌入是将输入序列中的每个离散符号(例如单词或子词)转换为密集的向量表示(即嵌入向量)的过程。

在这里插入图片描述

在这里插入图片描述

2.位置编码

由于 Transformer 没有像 RNN 或 LSTM 那样的序列顺序处理机制,它不能自动感知序列中词与词之间的顺序关系。因此,需要显式地引入位置编码来为每个词的表示添加位置信息。

位置编码通常通过正弦和余弦函数的组合来实现

在这里插入图片描述

然后将位置编码和输入嵌入相加形成最终的输入表示。

3.自注意力机制

自注意力机制是 Transformer 的核心组件之一,它允许模型在处理一个输入序列时,关注序列中不同位置的相关性。

具体来说,输入序列的每个元素都可以动态关注序列中的其他元素,以捕获长距离的依赖关系。

计算过程
在这里插入图片描述

4. 多头注意力机制

多头自注意力机制(Multi-Head Self-Attention)是对自注意力机制的扩展,它通过并行计算多个注意力头来捕获不同子空间中的特征。

计算步骤

在这里插入图片描述

5.前馈网络

前馈网络是 Transformer 中每个编码器和解码器层的组成部分,用于对每个位置的表示进行独立的非线性变换。

前馈网络通常由两个线性变换和一个 ReLU 激活函数组成。

公式如下:
在这里插入图片描述

6.残差连接与层归一化

残差连接与层归一化是 Transformer 中提升训练稳定性和加速收敛的关键技术。

残差连接

残差连接将子层的输入与其输出相加,以便为深层网络提供梯度流的捷径。

其公式为:

在这里插入图片描述

作用

  • 缓解梯度消失问题,增强深层网络的训练能力。
  • 允许模型保留低层次特征,同时学习更高层次的特征。

层归一化

层归一化对每个输入向量的所有维度进行归一化,确保输出的均值为 0,方差为 1。

公式为:
在这里插入图片描述

作用

  • 提高模型训练的稳定性。
  • 减少内部协变量偏移,加快收敛速度。
7.Masked 多头自注意力

Masked 多头自注意力是 Transformer 解码器中的一个重要组件,用于确保模型在训练时保持因果性,即在生成序列时,当前位置只能看到当前位置及之前的位置,不能看到未来的标记。

具体来说,在计算注意力分数时引入了遮掩矩阵 ,对所有未来位置设置极小值(通常是负无穷)。

公式为:
在这里插入图片描述

8.编码器-解码器多头注意力

编码器-解码器多头注意力是解码器中另一个关键组件,用于将解码器中的查询向量 (Query) 与编码器输出的键 (Key) 和值 (Value) 向量交互,从而动态提取输入序列的相关信息。

三、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值