深度学习(Deep Learning)——第4章 数值计算

本文介绍了数值计算中常见的上溢和下溢问题及其解决方法,如使用softmax函数提高数值稳定性。此外,还详细讨论了梯度下降法的基本原理,包括如何通过计算导数找到函数的最小值,并解释了临界点的概念。文章还提到了病态条件和条件数的概念,以及Jacobian和Hessian矩阵在优化过程中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、上溢和下溢

(1)当接近0的数被四舍五入为0时发生下溢,当大量级的数被近似为∞时发生上溢;

(2)softmax函数常用来进行数值稳定,定义为:

         

 

2、梯度下降

(1)梯度下降就是通过计算导数找到函数下坡方向,沿着函数下坡方向直到最小;

(2)当f'(x)=0时,导数无法提供往哪个方向移动的信息,这个点被称为临界点驻点;(可能是局部极小值点、局部极大值点或者鞍点)

(3)当f'(x)=0且f"(x)>0时,x是一个局部极小点(向左减小,向右增大);当f'(x)=0且f"(x)<0时,x是一个局部极大点;当f"(x)=0时,无法确定。

 

3、病态条件:条件数指的是函数相对于输入的微小变化而变化的快慢程度。

 

4、Jacobian和Hessian矩阵

     Jacobian和Hessian矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值