【Motion Forecasting】【摘要阅读】CaDeT: a Causal Disentanglement Approach for Robust Trajectory Prediction

CaDeT: a Causal Disentanglement Approach for Robust Trajectory Prediction in Autonomous Driving

这项工作发布于CVPR 2024,是一项来自于Noah’s Ark Lab, Huawei的工作。

Abstract

为了能够使自动驾驶车辆在真实世界中进行安全的运动规划,自动驾驶车辆需要一种可靠且对域迁移影响鲁棒的行为预测模型。

近期的大量工作表明,现有的基于学习的轨迹预测模型不具备上述特性,这些模型易受训练数据中未出现过的微小扰动的影响,这一现象很大程度上是由于在训练阶段模型拟合了虚假的关联所造成的。

在这项工作中,作者提出了一种因果解耦表示学习方法(casual disentanglement representation learning approach),该方法的目标是将不变的特征(具有因果关系的特征)和变化的特征(虚假的特征)进行分离,从而使得模型进行更鲁棒的学习。
在这里插入图片描述
本文方法受隐空间当中的一种新的干预机制(a novel intervention mechanism in the latent space)的启发,该机制使用不确定的特征统计(uncertain feature statistics)来对由虚假相关性所引起的潜在分布变化进行估计,从而保证了干预措施的真实性。

为了便于模型进行学习,本文方法提出了一种新的基于不确定统计分布方差的不变性目标,以诱导模型在训练过程中关注具有不变性的表示。

在两个大规模的自动驾驶运动预测数据集上的实验结果表明,本文方法取得了SOTA水准的结果,并且可以显著地提高模型对场景中各种不同分布迁移所产生变化的鲁棒性。

作者进一步在消融实验环节验证了本文方法所使用框架的有效性。
在这里插入图片描述
【听起来这项工作非常偏重于数学和统计学,通过数学方法来消除训练过程中模型所学习到的场景当中的虚假关联,我的理解是本文方法提出了一种图结构的剪枝策略,通过消除那些与代理未来运动关联不大的连接关系,来提高代理对场景信息感知的效率。】

Conclusion

本文提出了一种新颖的因果解耦方法,它可以通过场景中的时空模式(spatiotemporal patterns),使用因果解耦方法来对具有因果关系的和虚假的因素进行分离,从而形成正确的空间与时间关联。

本文方法提出了一种干预机制,通过使用特征统计生成基于隐空间(latent space)中虚假因素的多个干预分布来模拟推理时的潜在分布变化,从而保持干预措施的真实性。

最后,本文方法提出了一种具有不变性的训练目标,从而利用因果因素和干预分布来诱导模型专注于因果关系。通过这种方法,可以减少虚假相关性对模型推理所产生的影响,使得模型在推理过程中的分布变化更加鲁棒。

在两项大规模自动驾驶运动预测数据集上的实验结果表明,本文方法不仅取得了SOTA水准的结果,而且显著提升了模型针对多种分布变化的鲁棒性。

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值