YOLO11改进算法 | 引入SimAM模块的YOLO11-pose关键点姿态估计

目录

网络结构

测试结果

算法改进

局部和全局特征的兼顾

提升模型精度

提高计算效率

增强模型鲁棒性

模型指标

数据集介绍

Coovally AI模型训练与应用平台


YOLO11是由Ultralytics团队于2024年9月30日发布的,它是YOLO(You Only Look Once)系列中的最新成员。YOLO11在之前版本的YOLO基础上引入了新功能和改进,以进一步提高性能和灵活性。这使得YOLO11成为目标检测和跟踪、实例分割、图像分类和姿态估计等多种计算机视觉任务的理想选择。

图片

姿态估计是一项涉及识别图像中特定点(通常称为关键点)位置的任务。关键点可以代表物体的各个部分,如关节、地标或其他显著特征。关键点的位置通常表示为一组二维 [x, y] 或三维 [x, y, 可见] 坐标。

图片

姿态估计模型的输出是一组代表图像中物体关键点的点,通常还有每个点的置信度分数。当您需要识别场景中物体的特定部分及其相互之间的位置关系时,姿态估计是一个不错的选择。

YOLO11-pose 模型是专门为这项任务设计的,并使用-pose后缀,如 yolo11n-pose.pt。这些模型已在COCO关键点等数据集上预先训练过,可用于各种姿势估计任务。


网络结构

YOLO11的主要改进包括引入C2PSA(跨阶段局部自注意)模块,如图7所示,该模块将跨阶段局部网络和自注意机制的优势结合起来。这使模型能够更有效地跨多个层捕获上下文信息,从而提高物体检测准确率,尤其是对于小物体和共谋物体。此外,在YOLO11中,C2f模块已被C3k2取代,C3k2是CSP Bottleneck的自定义实现,它使用两个卷积,而YOLOv8则使用一个大卷积。该模块使用较小的内核,在提高效率和速度的同时保持了准确性。

图片


测试结果

YOLO11 这里显示的是经过预训练的Pose模型,官方在COCO数据集上做了更多测试,可看下图:

图片


算法改进

SimAM(Simple Attention Module)是一个轻量化且高效的注意力模块,专注于通过简单的计算提高模型对重要特征的捕捉能力。它通过模拟神经元的响应来衡量特征的重要性,特别适合嵌入到复杂模型中而不会增加过多计算开销。之所以加入切片操作是因为SimAM计算整张特征图的像素差平均值时加权可能会忽略小目标的重要性,小目标在航拍图像中占比比较小,与整体平均值相比可能和背景信息相似,导致加权增强较弱,进而使得SimAM对小目标的增强能力较差。

图片

  • 局部和全局特征的兼顾

切片操作细化特征处理,SimAM 加强局部重要性的建模,确保模型既能捕捉细节特征,又能保留全局一致性。

  • 提升模型精度

对复杂场景(如遮挡、多目标、复杂背景)的适应能力更强。对小关键点(如手指、脚趾等)的预测更加精准。

  • 提高计算效率

切片操作减少不必要的全局计算,SimAM 的轻量化设计进一步降低额外开销。

  • 增强模型鲁棒性

通过切片后的分区处理和注意力加权,模型能够更稳定地应对部分遮挡或数据缺失的情况。


模型指标

图片


数据集介绍

手部关键点数据集

数据集大小300张:训练集236张,验证集64张,关键点共21个。

关键点类别:

# 关键点的类别
keypoint_class = ['Ulna', 'Radius', 'FMCP','FPIP', 'FDIP', 'MCP5','MCP4', 'MCP3', 'MCP2','PIP5', 'PIP4', 'PIP3'
                  ,'PIP2', 'MIP5', 'MIP4','MIP3', 'MIP2', 'DIP5','DIP4', 'DIP3', 'DIP2']

图片


Coovally AI模型训练与应用平台

Coovally AI模型训练与应用平台,它整合了整合30+国内外开源社区1000+模型算法以及各类公开识别数据集

图片

如果你也想进行YOLO11算法模型训练,直接登Coovally,原始数据集也一键分享,开源算法直接下载使用!

图片


总结来说,YOLO-Pose在各个方面性能都有所提升。如果您有兴趣了解更多关于模型算法的使用方法等,欢迎关注我们,我们将继续为大家带来更多干货内容!

<think>嗯,用户想知道YOLO11-seg和YOLO11-pose之间的区别以及它们的适用场景。首先,我需要回忆一下这两个模型的基本信息。根据提供的引用,YOLO11-seg主要用于实例分割,比如道路缺陷检测,而YOLO11-pose则是处理姿态估计的,比如人体关键点检测。 用户可能在使用YOLO系列模型时遇到了选择上的困惑,不清楚哪个模型更适合自己的项目需求。比如,如果他们需要精确地分割出图像中的每个物体实例,比如检测道路上的裂缝或坑洞,这时候应该用seg版本。而如果需要识别人体的姿势,比如追踪运动员的动作,那么pose版本会更合适。 接下来,我需要确认这两个模型在结构上的差异。通常,分割模型会在检测的基础上添加分割头,生成像素级的掩码。而姿态估计模型则会输出关键点的坐标以及连接关系。引用中提到YOLO11-seg的训练涉及分割任务,而pose的部署则通过RKNN优化在嵌入式设备上的性能。 另外,用户可能关心它们的输入输出格式。分割模型输出的是物体类别、边框和掩码,而姿态模型输出的是关键点坐标和置信度。应用场景方面,分割适用于需要精确物体形状的任务,如医学图像分析;姿态估计则适用于动作识别或人机交互场景。 还需要考虑用户的实际应用环境,比如是否需要在嵌入式设备上部署。引用3提到YOLO11-pose通过RKNN优化,适合边缘计算,这可能影响用户的选择,尤其是在资源受限的情况下。 最后,总结两者差异时,要明确功能定位、输出结果和应用场景的区别,帮助用户根据具体需求做出选择。可能还需要提示用户根据数据标注类型(掩码vs关键点)和计算资源来选择合适的模型。</think>### YOLOv11-seg 与 YOLOv11-pose 的区别与适用场景 #### **1. 功能定位差异** - **YOLOv11-seg** 专注于**实例分割**任务,即在目标检测基础上生成像素级掩膜(mask),精确标记物体轮廓。适用于需要区分同类物体个体并定位其边界的场景,例如道路缺陷检测(如裂缝、坑洞的像素级标注)[^2]。 输入输出示例: - 输入:图像 - 输出:物体类别、边界框、分割掩膜 - **YOLOv11-pose** 专注于**姿态估计**任务,检测图像中人体或物体的关键点并构建骨架结构。适用于动作识别、运动分析等场景,例如健身动作矫正或工业机械臂姿态监控[^3]。 输入输出示例: - 输入:图像 - 输出:关键点坐标、置信度、骨架连接关系 #### **2. 模型结构差异** - **YOLOv11-seg** 在基础检测模型上增加**分割头(Segmentation Head)**,通过卷积层输出掩膜特征图。训练时需标注掩膜标签,例如道路缺陷的边缘轮廓数据[^2]。 ```python # 示例分割头结构(简化) class SegmentationHead(nn.Module): def __init__(self, in_channels, num_classes): super().__init__() self.mask = nn.Conv2d(in_channels, num_classes, kernel_size=1) ``` - **YOLOv11-pose** 在检测模型基础上扩展**关键点头(Keypoint Head)**,预测关键点位置及可见性。训练需标注关键点坐标,如人体关节位置。 ```python # 示例关键点头结构(简化) class KeypointHead(nn.Module): def __init__(self, in_channels, num_keypoints): super().__init__() self.keypoints = nn.Conv2d(in_channels, num_keypoints*3, kernel_size
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值