TwinCAT软件编码器参数介绍

1.TwinCAT NC PTP的控制周期

通常说的NC周期,是指轨迹规划和PID运算的周期,是NC与伺服驱动器交换数据的周期,目标位置、当前位置、控制字、状态字都以这个频率更新。在TwinCAT System Manager中,叫做NC Task SAF任务周期,默认值为2ms。

另一个NC周期,是NC与PLC交换数据的周期,比如NC轴状态、当前位置、使能信号等等,都是以这个周期刷新的。在TwinCAT System Manager中,叫做NC Task SVB任务周期,默认值为10ms,与PLC程序中默认的任务周期一致。

2.TwinCAT NC PTP的配置、编程、调试

TwinCAT NC轴的配置包括:编码器(Enc)、驱动器(Drive)、 NC控制器(Ctrl)、与PLC的接口(Inputs和Outputs)。 Enc和Drive的配置决定了NC轴与哪个驱动器对应,而Inputs和Outputs 则决定它对应PLC程序中的哪一个轴结构型变量。Ctrl中的设置则决定了PID运算的模型和参数。

2.1 Enc编码器参数设置
在这里插入图片描述

  1. Invert Encoder Counting Direction:编码器计数方向取反,默认为False
  2. Scaling Factor Numerator:每个位置反馈的编码器脉冲对应的距离。比如:电机转动一圈1048576个脉冲,而电机转动一圈对应360mm,则Scaling Factor应为360/1048576=0.000343323 mm/Inc。
    在这里插入图片描述
  3. Scaling Factor Denominator:编码器反馈的脉冲数。
  4. Position Bias:设备原点与编码器零位之间的偏移,机械安装固定后,此值就不变。当使用绝对编码器时,不需要每次寻参,就用这个偏移量来计算设备原点。因为多圈绝对编码器每次上电的位置是不变的,而单圈绝对编码器每次上电的位置是个Modulo值。
  5. Modular Factor:模长。通常指一个工艺周期Axis运动的距离,默认值360。比如旋转主轴定位动作,当前位置30度,要定位到60度,电机可以正转30度,也可以正转390度,最终都是到达同一个点。
  6. Encoder Mask:编码器掩码,与位置变量的位数有关,通常都是32位。
  7. Encoder SubMask:编码器子掩码,与最大反馈值有关。Encoder Mask、 Encoder SubMask和Reference System三个参数正常情况下,都不用设置,选择好编码器的类型之后 NC 就已经确定了它们的值。

在这里插入图片描述

  1. Invert Direction for Calibration Cam:是否往负方向运动,寻找原点。
  2. Invert Direction for Sync Impuls Search:找到原点后,是否往负方向运动,寻找同步脉冲。
  3. Calibration Value:参考点位置。通常这个值会在PLC程序里给定,此处设置与否不影响。
  4. Reference Mode:寻参模式。
相关推荐
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手的带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带的源码资料可作为毕设使用</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我的毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页