[paper] A micro Lie theory for state estimation in robotics

简介

论文在arxiv中有

这是Joan Sola在2018年发的文章,比较详细讲机器人状态估计中所用到的李群李代数的理论还有推导.

同时他们还开源了一个李群的C++库 manif,这个库的还没有研究过,和Sophus的优劣也没有比较,日后补上…

写下来主要还是记录一下自己的理解和一些推导过程,同时也push自己看论文吧.建议对李群和李代数了解不深的还是去看原文.
ps:以下的图片都是从论文中截图过来的

A Micro Lie Theory

李群(Lie group)

利群包括两个部分:群和光滑流形(smooth manifold)
光滑流形可以理解为一个超平面,我们所需要的状态变量都在超平面上.
群的概念就是高博的十四讲中提高的"封结幺逆",即封闭性(Closure), 结合律(Associativity), 幺元(Identity), 逆(Inverse)

The group action

李群可以把一些集合中元素进行变化,比如旋转,平移,尺度变化等,对于我们来说就是2D,3D的变化,一个点通过旋转矩阵或变化矩阵变化到另一个点上.

李代数(Lie algebra)

李代数是原点附近的正切空间,记作:
m = T ε M . m = T_\varepsilon M. m=TεM.
李代数,李群,还有向量的关系从下面这张图中可以很清楚的看出来映射关系图
李代数与李群的映射关系也可以从下面这种图中看出
在这里插入图片描述
李代数也能被定义在一个局部的切点上 X X X上,李代数要在左边加一个上表 X v ∧ ∈ T X M . ^Xv^\land \in T_X M. XvTXM.
指数映射的几个重要性质:
e x p ( ( t + s ) τ ∧ ) = e x p ( t τ ∧ ) e x p ( s τ ∧ ) exp((t+s)\tau^\land) = exp(t\tau^\land)exp(s\tau^\land) exp((t+s)τ)=exp(tτ)exp(sτ) e x p ( t τ ∧ ) = e x p ( t τ ∧ ) t exp(t\tau^\land) = exp(t\tau^\land)^t exp(tτ)=exp(tτ)t e x p ( − τ ∧ ) = e x p ( t τ ∧ ) − 1 exp(-\tau^\land) = exp(t\tau^\land)^{-1} exp(τ)=exp(tτ)1 e x p ( X τ ∧ X − 1 ) = X e x p ( τ ∧ ) X − 1 exp(X\tau^\land X^{-1}) = Xexp(\tau^\land)X^{-1} exp(XτX1)=Xexp(τ)X1第四个公式用泰勒展开就可以证明,高博的十四讲的课后题

加减操作(Plus and minus operators)

加减操作分为左右加法和左右减法,下面分别用公式来表示.(公式中的加减号都是广义的加减号)
右加操作 Y = X + X τ = X ∘ E x p ( X τ ) Y=X+^X\tau =X \circ Exp(^X\tau) Y=X+Xτ=XExp(Xτ)右减操作: X τ = Y − X = L o g ( Y ∘ X − 1 ) ^X\tau =Y-X =Log(Y \circ X^{-1}) Xτ=YX=Log(YX1)左加操作 Y = ε τ + X = E x p ( ε τ ) ∘ X Y={^\varepsilon\tau} + X = Exp(^\varepsilon\tau) \circ X Y=ετ+X=Exp(ετ)X左减操作: ε τ = Y − X = L o g ( Y ∘ X − 1 ) ^\varepsilon\tau =Y-X =Log(Y \circ X^{-1}) ετ=YX=Log(YX1)
右操作是在局部坐标系下,而左操作是在全局坐标系下的.

伴随和伴随矩阵(The adjoint, and the adjoint matrix)

看到这个概念的时候我刚开始不是很理解,但看了论文配图后便很容易理解了.先上图
在这里插入图片描述
再上公式 A d X ( τ ∧ ) = X τ ∧ X − 1 Ad_X(\tau^\land)=X\tau^\land X^{-1} AdX(τ)=XτX1可以理解为将李代数从一个坐标系变化到另一个坐标系下.当然他还有两个性质
线性 : A d X ( a τ ∧ + b σ ∧ ) = a A d X ( τ ∧ ) + b A d X ( σ ∧ ) Ad_X({a\tau^\land} + b\sigma^\land)=aAd_X(\tau^\land)+bAd_X(\sigma^\land) AdX(aτ+bσ)=aAdX(τ)+bAdX(σ)
同构 : A d X ( A d Y ( τ ∧ ) ) = A d X Y ( τ ∧ ) Ad_X(Ad_Y(\tau^\land))=Ad_{XY}(\tau^\land) AdX(AdY(τ))=AdXY(τ)
Adjoint是李代数到李代数的一个变换,Adjoint matrix是 R m R^m Rm R m R^m Rm的一个变换 A d X τ = ( X τ ∧ X − 1 ) ∨ \boldsymbol{Ad_X}\tau=(X\tau^\land X^{-1})^\lor AdXτ=(XτX1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值