II. A MICRO LIE THEORY
A. The Lie group
The Lie group encompasses the concepts of group and smooth manifold in a unique body:
李群将群和光滑流形的概念包含在一个唯一体中:
a Lie group G is a smooth manifold whose elements satisfy the group axioms. We briefly
present these two concepts before joining them together.
李群 G 是一个光滑流形,其元素满足群公理。 在将它们连接在一起之前,我们简要介绍这两个概念。
流形的概念
On one hand, a differentiable or smooth manifold is a topological space that locally resembles linear space.
一方面,可微分或光滑流形是局部类似于线性空间的拓扑空间。
The reader should be able to visualize the idea of manifold (Fig. 2):
读者应该能够形象化流形的概念(图 2):
流
形
M
和
向
量
空
间
T
X
M
(
在
这
种
情
况
下
∼
=
R
2
)
在
点
X
处
切
线
,
以
及
方
便
的
侧
切
。
速
度
元
素
,
X
ˉ
=
∂
X
/
∂
t
,
不
属
于
流
形
M
,
而
是
属
于
切
线
空
间
T
X
M
。
流形 M 和向量空间 T_XM(在这种情况下 ∼= R2) 在点 X 处切线,以及方便的侧切。\\ 速度元素,\bar X = ∂X/∂t,不属于流形M,而是属于切线空间T_XM。
流形M和向量空间TXM(在这种情况下∼=R2)在点X处切线,以及方便的侧切。速度元素,Xˉ=∂X/∂t,不属于流形M,而是属于切线空间TXM。
it is like a curved, smooth (hyper)-surface, with no edges or spikes, embedded in a space of higher dimension.
它就像一个弯曲的、光滑的(超)表面,没有边缘或尖刺,嵌入到更高维度的空间中。
In robotics,we say that our state vector evolves on this surface, that is, the manifold describes or is defined by the constraints imposed on the state.
在机器人学中,我们说我们的状态向量在这个表面上演化,也就是说,流形描述或由施加在状态上的约束定义。
For example, vectors with the unit norm constraint define a spherical manifold of radius one.
例如,具有单位范数约束的向量定义半径为 1 的球形流形。
The smoothness of the manifold implies the existence of a unique tangent space at each point. This space is a linear or vector space on which we are allowed to do calculus.
流形的平滑意味着每个点都存在唯一的切线空间。 这个空间是一个线性或向量空间,我们可以在上面做微积分。
群的概念
In a Lie group, the manifold looks the same at every point (like e.g. in the surface of a sphere, see Exs. 1 and 2), and therefore all tangent spaces at any point are alike.
在李群中,流形在每一点看起来都相同(例如在球体的表面,参见例 1 和例 2),因此任何一点的所有切空间都是相似的。
注:先省略一下例子
The group structure imposes that the composition of elements of the manifold remains on the manifold, (1), and that each element has an inverse also in the manifold, (3). A special one of these elements is the identity, (2), and thus a special one of the tangent spaces is the tangent at the identity, which we call the Lie algebra of the Lie group.
群结构要求 :
流形中的元素的结合仍在流形上,(1),并且每个元素在流形中也有一个逆,(3)。 这些元素中的一个特殊元素是恒等式 (2),因此切空间中的一个特殊元素是恒等式处的切线,我们将其称为李群的李代数。
注:这里的(1),(3),(2)是群的性质
Lie groups join the local properties of smooth manifolds, allowing us to do calculus, with the global properties of groups, enabling nonlinear composition of distant objects.
李群加入了光滑流形的局部特性,使我们能够利用群的全局特性进行微积分,从而实现远距离物体的非线性组合。
In this work, for simplicity and as it has been common in robotics works, we will oftentimes refer to Lie groups as just ‘manifolds’
.在这项工作中,为了简单起见,因为它在机器人工作中很常见,我们经常将李群称为“流形”。