A micro Lie theory for state estimation in robotics000:绪论ol

本文探讨了李群的概念,它是一个每一点都具有相同结构的流型。李群的幺元的切空间被称为李代数,而其他点的切空间可以通过伴随变换与幺元的切空间关联。增量和伴随运算揭示了李群中元素切空间之间的关系,这在李群理论中至关重要。指数/对数映射提供了李群与李代数之间的精确对应。此外,还介绍了李群导数的概念,它是类似函数导数的推广。
摘要由CSDN通过智能技术生成

流型,李群,切空间,李代数

李 群 ( M ) 是 一 个 每 一 点 都 一 样 的 流 型 李 群 的 幺 元 的 切 空 间 ( τ M e ) 叫 李 代 数 ( m ) ( 但 是 其 他 元 素 的 切 空 间 与 幺 元 的 是 可 以 转 换 的 , 将 这 个 线 性 变 换 称 为 伴 随 , 有 了 " 增 量 " 再 说 ) 李群(M)是一个每一点都一样的流型\\ 李群的幺元的切空间(τM_e)叫李代数(m)\\(但是其他元素的切空间与幺元的是可以转换的,将这个线性变换称为伴随,有了"增量"再说) (M)τMe(m)线""

h a t 与 v e e 则 是 该 向 量 及 其 对 应 的 李 代 数 之 间 的 转 换 hat与vee则是该向量及其对应的李代数之间的转换 hatvee

指 数 / 对 数 映 射 是 李 群 和 李 代 数 之 间 的 一 个 精 确 映 射 。 指数/对数映射是李群和李代数之间的一个精确映射。 /
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

流形上的增量与伴随

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

增量的例子(下图前两个式子)

在这里插入图片描述
第 二 个 式 子 中 , 表 示 了 幺 元 处 切 空 间 与 其 他 元 素 切 空 间 的 关 系 第二个式子中,表示了幺元处切空间与其他元素切空间的关系
在这里插入图片描述
由 此 定 义 伴 随 运 算 由此定义伴随运算
在这里插入图片描述
性 质 : 性质: :
在这里插入图片描述
现 在 的 伴 随 是 李 代 数 之 间 的 关 系 , 由 于 李 代 数 与 向 量 空 间 的 同 构 , 通 过 v e e 将 伴 随 放 到 向 量 的 空 间 现在的伴随是李代数之间的关系,由于李代数与向量空间的同构,\\ 通过vee将伴随放到向量的空间 vee
在这里插入图片描述在这里插入图片描述
Example 6

李群的导数

类 似 函 数 的 导 数 , 我 们 定 义 李 群 的 导 数 ( 雅 可 比 矩 阵 ) 为 : 类似函数的导数,我们定义李群的导数(雅可比矩阵)为:
f 的 右 导 数 : f的右导数: f在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值