流型,李群,切空间,李代数
李 群 ( M ) 是 一 个 每 一 点 都 一 样 的 流 型 李 群 的 幺 元 的 切 空 间 ( τ M e ) 叫 李 代 数 ( m ) ( 但 是 其 他 元 素 的 切 空 间 与 幺 元 的 是 可 以 转 换 的 , 将 这 个 线 性 变 换 称 为 伴 随 , 有 了 " 增 量 " 再 说 ) 李群(M)是一个每一点都一样的流型\\ 李群的幺元的切空间(τM_e)叫李代数(m)\\(但是其他元素的切空间与幺元的是可以转换的,将这个线性变换称为伴随,有了"增量"再说) 李群(M)是一个每一点都一样的流型李群的幺元的切空间(τMe)叫李代数(m)(但是其他元素的切空间与幺元的是可以转换的,将这个线性变换称为伴随,有了"增量"再说)
h a t 与 v e e 则 是 该 向 量 及 其 对 应 的 李 代 数 之 间 的 转 换 hat与vee则是该向量及其对应的李代数之间的转换 hat与vee则是该向量及其对应的李代数之间的转换
指
数
/
对
数
映
射
是
李
群
和
李
代
数
之
间
的
一
个
精
确
映
射
。
指数/对数映射是李群和李代数之间的一个精确映射。
指数/对数映射是李群和李代数之间的一个精确映射。
流形上的增量与伴随
增量的例子(下图前两个式子)
第
二
个
式
子
中
,
表
示
了
幺
元
处
切
空
间
与
其
他
元
素
切
空
间
的
关
系
第二个式子中,表示了幺元处切空间与其他元素切空间的关系
第二个式子中,表示了幺元处切空间与其他元素切空间的关系
由
此
定
义
伴
随
运
算
由此定义伴随运算
由此定义伴随运算
性
质
:
性质:
性质:
现
在
的
伴
随
是
李
代
数
之
间
的
关
系
,
由
于
李
代
数
与
向
量
空
间
的
同
构
,
通
过
v
e
e
将
伴
随
放
到
向
量
的
空
间
现在的伴随是李代数之间的关系,由于李代数与向量空间的同构,\\ 通过vee将伴随放到向量的空间
现在的伴随是李代数之间的关系,由于李代数与向量空间的同构,通过vee将伴随放到向量的空间
Example 6
李群的导数
类
似
函
数
的
导
数
,
我
们
定
义
李
群
的
导
数
(
雅
可
比
矩
阵
)
为
:
类似函数的导数,我们定义李群的导数(雅可比矩阵)为:
类似函数的导数,我们定义李群的导数(雅可比矩阵)为:
f
的
右
导
数
:
f的右导数:
f的右导数: