CNN-语义分割Head及自动驾驶应用

一、监督中间过程使训练的权重分布更符合物理意义->提高准确率

深网络参数量大于系统的自由度,或多或少地都存在过拟合,因此不同的训练方式可以获得不同的权重分布,而好的权重分布可以提升准确率。那么什么是好的权重分布?对于单纯的端到端的训练,得到的中间层输出的物理意义不强,加强中间层输出的物理意义就可以得到更合理的权重分布。基于这种思想,有两种方法可以加强中间层输出的物理意义。

1、采用先训练一部分网络(encoder),这样得到的encoder部分的权重是可以得到降采样了的、符合真实值的预测结果,即符合物理意义的权重分布。再用训练好的权重初始化全部网络(encoder-decoder),增加较高分辨率的细节信息。而如果直接使用端到端的方式训练encoder-decoder的整个网络,前面encoder部分的权重分布往往没有单独的物理意义,不能预测出较好的降采样的结果,整体的权重分布得到的准确率也相对一些。相应的论文可参见ENet, ERFNet。

2、对中间层的输出设置一个或多个loss function, 以一定的权重加到最后的一层的loss function中,获得一个总体的loss functon,让神经网络优化这个总体的loss function。这样中间层的loss function没被考虑,使得这些中间层之前的网络的权重更符合物理意义,提高准确率。可参见ICNet, PSPNet。

二、多尺度信息的思想

当训练数据集内存在不同尺度的同一内容时,如近大远小导致的不同尺度的人,神经网络可以隐式地把不同尺度大小的人都识别出来。即便如此,显式地增加多尺度信息可以提升神经网络的准确率,同时采用多尺度的信息可以让神经网络在做局部预测时更好地考虑全局信息。两种方法:

1、将不同感受野的feature

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
CNN-GRU和CNN-LSTM是两种常用的深度学习神经网络模型,用于时间序列预测任务。它们在结构上有一些区别,主要体现在使用的循环单元和注意力机制上。 CNN-GRU模型使用了卷积神经网络CNN)和门控循环单元(GRU)。CNN用于提取时间序列数据中的局部特征,而GRU则用于捕捉序列中的长期依赖关系。GRU是一种门控循环单元,类似于长短期记忆(LSTM),但参数更少,计算效率更高。GRU通过更新门和重置门来控制信息的流动,从而更好地捕捉序列中的重要信息。 CNN-LSTM模型也使用了卷积神经网络CNN),但使用的循环单元是长短期记忆(LSTM)。LSTM是一种特殊的循环神经网络,具有记忆单元和门控机制,可以更好地处理长期依赖关系。LSTM通过遗忘门、输入门和输出门来控制信息的流动,从而更好地捕捉序列中的重要信息。 相比而言,CNN-GRU模型相对于CNN-LSTM模型具有以下特点: 1. 参数更少:GRU相对于LSTM具有更少的参数,因此CNN-GRU模型的训练和推理速度更快。 2. 计算效率更高:由于参数更少,GRU的计算效率更高,适用于大规模数据集和复杂任务。 3. 更好的捕捉短期依赖关系:GRU通过门控机制更好地捕捉序列中的短期依赖关系,适用于需要更关注最近的信息的任务。 然而,选择使用哪种模型取决于具体的任务和数据集。在某些情况下,CNN-LSTM模型可能更适合处理长期依赖关系,而在其他情况下,CNN-GRU模型可能更适合处理短期依赖关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuyuelongfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值