深度学习:IoU、Accuracy、Precision、Recall区别

本文详细介绍了IoU、Accuracy、Precision和Recall等评价指标在深度学习,特别是目标检测任务中的应用。 IoU是交并比,用于衡量预测框与真实框的重合程度。Accuracy在二分类问题中有用,但在不平衡数据集上可能失真。Precision和Recall分别表示预测正例中正确比例和实际正例被检测出的比例,常用于衡量模型查准率和查全率。F1 Score是Precision和Recall的调和平均,用于找到两者之间的最佳平衡。AP(Average Precision)则通过不同Recall下的Precision平均值来评估模型的性能,COCO AP提供了更全面的IoU阈值评估。mAP(mean Average Precision)则是所有类别的AP平均值,用于衡量多类别检测任务的整体效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tp(true positive):正检

fp(false positive):误检,fase detection

fn(false negative):漏检,miss detection

  • IoU交并比

IoU=\frac{tp}{tp+fp+fn}

  • Accuracy准确率

Accuracy=\frac{tp+tn}{tp+tn+fp+fn}

1. 有些问题是容易计算tn的,如图像中是否有汽车的二分类问题。但是,对于一个有很多negative样本的数据集,一般模型都能给出很大的tn,使得Accuracy值很高,通过Accuracy评价模型使得差异度不明显,所以需要去除tn的影响,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yuyuelongfly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值