tp(true positive):正检
fp(false positive):误检,fase detection
fn(false negative):漏检,miss detection
- IoU交并比
- Accuracy准确率
1. 有些问题是容易计算tn的,如图像中是否有汽车的二分类问题。但是,对于一个有很多negative样本的数据集,一般模型都能给出很大的tn,使得Accuracy值很高,通过Accuracy评价模型使得差异度不明显,所以需要去除tn的影响,
tp(true positive):正检
fp(false positive):误检,fase detection
fn(false negative):漏检,miss detection
1. 有些问题是容易计算tn的,如图像中是否有汽车的二分类问题。但是,对于一个有很多negative样本的数据集,一般模型都能给出很大的tn,使得Accuracy值很高,通过Accuracy评价模型使得差异度不明显,所以需要去除tn的影响,