原点云
1.统计滤波,去除离群点
#include "pch.h"
using namespace std;
#include <pcl/point_types.h> //PCL中所有点类型定义的头文件
#include <pcl/io/pcd_io.h> //打开关闭pcd文件的类定义的头文件
#include <pcl/filters/statistical_outlier_removal.h>
typedef pcl::PointXYZ PoinT;
int main(int argc, char** argv)
{
pcl::PointCloud<PoinT>::Ptr cloud(new pcl::PointCloud<PoinT>());
// 加载pcd文件
pcl::io::loadPCDFile("desk.pcd", *cloud);
std::cout << "Cloud before filtering: " << std::endl;
std::cout << *cloud << std::endl;
// 统计滤波
// 创建滤波器,对每个点分析的临近点的个数设置为50 ,并将标准差的倍数设置为1 这意味着如果一
// 个点的距离超出了平均距离一个标准差以上,则该点被标记为离群点,并将它移除
pcl::StatisticalOutlierRemoval<PoinT> sor; // 创建滤波器对象
sor.setInputCloud(cloud); // 设置待滤波的点云
sor.setMeanK(50); // 设置在进行统计时考虑查询点临近点数
sor.setStddevMulThresh(1); // 设置判断是否为离群点的阀值
sor.filter(*cloud); // 过滤
// 储存
pcl::io::savePCDFileBinary("desk-sor.pcd", *cloud);
return 0;
}
2.直通滤波,去除室外点
pcl::PassThrough<PoinT> pass;
pass.setInputCloud(cloud);
pass.setFilterFieldName("z"); // 设置过滤时所需要点云类型的Z字段
pass.setFilterLimits(-0.1, 10); // 设置在过滤字段的范围
pass.setFilterLimitsNegative(true); // 保留还是过滤掉范围内的点
pass.filter(*cloud);
3.平面分割
#include "pch.h"
using namespace std;
#include <pcl/point_types.h> //PCL中所有点类型定义的头文件
#include <pcl/io/pcd_io.h> //打开关闭pcd文件的类定义的头文件
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
typedef pcl::PointXYZ PoinT;
// 随机产生颜色
int *rand_rgb() {
int *rgb = new int[3];
rgb[0] = rand() % 255;
rgb[1] = rand() % 255;
rgb[2] = rand() % 255;
return rgb;
}
int main(int argc, char** argv)
{
pcl::PointCloud<PoinT>::Ptr cloud(new pcl::PointCloud<PoinT>());
// 加载pcd文件
pcl::io::loadPCDFile("desk-sor.pcd", *cloud);
std::cout << "Cloud before filtering: " << std::endl;
std::cout << *cloud << std::endl;
// 平面分隔
pcl::PointCloud<PoinT>::Ptr cloud_filtered(new pcl::PointCloud<PoinT>());
pcl::SACSegmentation<PoinT> seg;
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients());// 创建参数模型的的参数对象
pcl::PointIndices::Ptr inliers(new pcl::PointIndices());// 储存模型内点的下标索引的数组指针
seg.setMethodType(pcl::SAC_RANSAC); // 设置方法【聚类或随机样本一致性】
seg.setModelType(pcl::SACMODEL_PLANE); // 设置模型类型,检测平面
seg.setMaxIterations(100);
seg.setDistanceThreshold(0.01);
// Extract the inliers
pcl::ExtractIndices<PoinT> extract;
extract.setNegative(true);
int cloud_size = cloud->size();
int i = 0;
// 迭代进行分割直到剩余80%的点云
while (cloud->size() > cloud_size * .8)
{
seg.setInputCloud(cloud);
seg.segment(*inliers, *coefficients);// 传入的参数未进行赋值 利用参数模型进行分割
extract.setInputCloud(cloud);
extract.setIndices(inliers);
extract.setNegative(false);
extract.filter(*cloud_filtered);
extract.setNegative(true);
extract.filter(*cloud);
cout << i << ":" << cloud->size() << endl;
stringstream ss;
ss << "desk-seg" << i << ".pcd";
// 保存结果
pcl::io::savePCDFileBinary(ss.str(), *cloud_filtered);
i++;
}
pcl::io::savePCDFileBinary("desk-seg.pcd", *cloud);
return 0;
}
seg0:
seg:
4.聚类分割
#include "pch.h"
using namespace std;
#include <pcl/point_types.h> //PCL中所有点类型定义的头文件
#include <pcl/io/pcd_io.h> //打开关闭pcd文件的类定义的头文件
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/filters/passthrough.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/kdtree/kdtree_flann.h> //kd-tree搜索对象的类定义的头文件
#include <pcl/segmentation/extract_clusters.h>
#include <pcl/visualization/cloud_viewer.h>
typedef pcl::PointXYZ PoinT;
int main(int argc, char** argv)
{
pcl::PointCloud<PoinT>::Ptr cloud(new pcl::PointCloud<PoinT>());
// 加载pcd文件
pcl::io::loadPCDFile("desk-seg.pcd", *cloud);
std::cout << "Cloud before filtering: " << std::endl;
std::cout << *cloud << std::endl;
// 聚类分割
//为提取点云时使用的搜素对象利用输入点云cloud_filtered创建Kd树对象tree。
pcl::search::KdTree<PoinT>::Ptr tree(new pcl::search::KdTree<PoinT>);
tree->setInputCloud(cloud);//创建点云索引向量,用于存储实际的点云信息
std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<PoinT> ece;
ece.setClusterTolerance(0.02); //设置近邻搜索的搜索半径为2cm
ece.setMinClusterSize(100);//设置一个聚类需要的最少点数目为100
// ec.setMaxClusterSize(25000); //设置一个聚类需要的最大点数目为25000
ece.setSearchMethod(tree);//设置点云的搜索机制
ece.setInputCloud(cloud);
ece.extract(cluster_indices);//从点云中提取聚类,并将点云索引保存在cluster_indices中
//迭代访问点云索引cluster_indices,直到分割出所有聚类
int i = 0;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin(); it != cluster_indices.end(); it++)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster(new pcl::PointCloud<pcl::PointXYZ>);
cloud_cluster->width = cloud_cluster->points.size();
cloud_cluster->height = 1;
cloud_cluster->is_dense = true;
//创建新的点云数据集cloud_cluster,将所有当前聚类写入到点云数据集中
for (std::vector<int>::const_iterator pit = it->indices.begin(); pit != it->indices.end(); pit++)
{
cloud_cluster->points.push_back(cloud->points[*pit]);
}
cout << i << ":" << cloud->size() << endl;
// 保存结果
stringstream ss;
ss << "desk-ece" << i << ".pcd";
pcl::io::savePCDFileBinary(ss.str(), *cloud_cluster);
i++;
}
}
ece0:
ece1:
ece2:
ece3:
ece4:
ece5:
ece6: