向量积(叉积)

ab叉积可表示为a×b,结果是一个和这两个向量都垂直的伪向量


a×b =absinθ*n ,ab为两向量的模长,θ是两向量的夹角,n是垂直二者的单位向量。

叉积的长度可以理解为以ab为邻边的平行四边形面积


叉积的运算

反交换律

a×b=-b×a

分配律

a×(b+c)=a×b+a×c

可与标量相乘
构成李代数

a×(b×c)+b×(a×c)+c×(a×b)=0


右手定则


给出两个三维向量,计算叉积

设两向量为u v,它们都是由三个坐标轴方向的向量加起来的,所以它们的叉积可以表示为(u.x+u.y+u.z)×(v.x+v.y+v.z)

分配律展开,两平行的向量叉积为0,垂直向量叉积与两向量垂直,长度就是两向量的模长的积

Point cross(Point u,Point v)
{
    Point ret;
    ret.x = u.y * v.z - v.y * u.z;
    ret.y = u.z * v.x - u.x * v.z;
    ret.z = u.x * v.y - u.y * v.x;
    return ret;
}




### 三维空间中向量的点 #### 点有两种定义方式:代数方式和几何方式。通过在欧氏空间中引入笛卡尔坐标系,向量之间的点既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来解[^4]。 对于两个向量 \(\vec{a} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}\) 和 \(\vec{b} = b_x\hat{i} + b_y\hat{j} + b_z\hat{k}\),其点可以通过以下两种方式进行计算: - **代数形式**: \[ \vec{a} \cdot \vec{b} = a_xb_x + a_yb_y + a_zb_z \] - **几何形式**: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos{\theta} \] 其中 \(|\vec{a}|\) 表示向量 \(\vec{a}\) 的模长,\(θ\) 是两向量间的夹角。 #### 的结果是一个新的向量,该新向量垂直于原来的两个输入向量所构成的平面,并遵循右手定则方向。如果给定了两个不共线的非零向量 \(\vec{v}\) 和 \(\vec{w}\),那么它们的可表示为一个新的向量 \(\vec{n}\): \[ \vec{n} = \vec{v} \times \vec{w} \] 此操作不仅限于简单的法;实际上它涉及到行列式的计算过程。具体来说, ```python import numpy as np def cross_product(v, w): v_matrix = np.array([[v[0], v[1], v[2]]]) w_matrix = np.array([[w[0], w[1], w[2]]]) result_vector = np.cross(v_matrix.T.flatten(), w_matrix.T.flatten()) return result_vector.tolist() ``` 当考虑标准基底下的分量时,即有: \[ \vec{v} \times \vec{w} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ v_x & v_y & v_z\\ w_x & w_y & w_z \end{vmatrix} \] 这里的矩阵并非传统意义上的行列式,而是用于帮助理解和记忆的一种工具[^3]。最终得到的新向量的方向取决于原始两个向量的位置关系以及所在的空间定向(右手法则),而大小等于这两个向量组成的平行四边形面[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值