6 识别治病突变
致病突变受到蛋白质稳定性、氢键模式、动态折叠、功能和关键生物特性变化的影响。因此,SIFT 、PolyPhen 、MutationTaster 和Cscape等计算方法使用基于结构、序列和网络的特征来预测蛋白质编码的单核苷酸变体对蛋白质结构表型的影响。此外,还开发了用于识别致癌突变的特定方法,如CADD 、FATHMM-cancer、CTATcancer、CHASM、MVP 和Packpred。最近,Pandey等人开发了GBMDriver用于识别特定癌症——胶质母细胞瘤的driver基因突变。
6.1 发生在表皮生长因子受体的driver突变
Chen等报道EGFR突变通常发生在EGFR酪氨酸激酶结构域内的第21外显子或第19外显子,并深刻影响不同的肺癌亚型。Anoosha等人利用野生型和突变型蛋白质结构中的氨基酸及其邻近残基的特征,分析了来自COSMIC数据库的一组EGFR错义突变。利用这些信息,他们开发了一个分类模型,使用一组21个特征来区分驾驶员和乘客的突变。结果表明,基于二级结构类的数据集分类提高了模型性能。该算法已被用于筛选EGFR中所有可能的突变,并识别出最可能的driver和乘客突变。
6.2 胶质母细胞瘤的致病突变
胶质母细胞瘤(GBM)是一种最常见、生长最快的脑癌,它会影响大脑中的细胞。GBM中存在的不同遗传和表观遗传(epigenetic alterations)改变对各种主要信号通路的修饰导致脑肿瘤的生长、进展和治疗耐药性。许多功能重要的突变已在IDH1 (R132H/G/L/S)、IDH2 (R140Q)、EGFR和BRAF中被确定,它们是癌症中众所周知的表观遗传修饰因子。Carter等人开发了一种方法CHASM&#x