太强了!LIama 3.1正式发布

 Datawhale干货 

编辑:量子位、Datawhale

刚刚,LIama 3.1正式发布,登上大模型王座!

在150多个基准测试集中,405B版本的表现追平甚至超越了现有SOTA模型GPT-4o和Claude 3.5 Sonnet。

也就是说,这次,最强开源模型即最强模型

06a852d61a5e9571e5191da2fc0ff897.png

各大云厂商也在第一时间上线了的Llama 3.1的支持,价格是酱婶的:

1054f8b2c9c863d2431a4416d4c563b6.png

LIama 3.1官方正式发布

首先来看模型能力。

Llama 3.1将上下文长度扩展到 128K、增加了对八种语言的支持。

其中超大杯405B版本,在常识、可操纵性、数学、工具使用和多语言翻译等能力方面都追平、超越了现有顶尖模型。

96d43a5d8889f1e080b3733586a06e1a.png
fd142baa7afba1d42a6fe7c9f6c8fa34.png

除此之外,也推出了8B和70B模型的升级版本,能力与同等参数下的顶尖模型基本持平。

923099f34da9a376130395f38ae1af81.png

再来看模型架构

官方介绍,要在超15万亿个token上训练 Llama 3.1 405B模型挑战不小。

为此他们大幅优化了整个训练栈,并把模型算力规模首次扩展到了超过16000个H100 GPU。

5799e2819507c6d4f407765e47a78a53.png

具体来说,还是采用标准的仅解码器的Transformer架构,并做一些细微改动;并采用迭代的post-traing流程,每轮都有SFT(监督微调)和DPO(直接偏好优化),以提高每个能力的性能。

与Llama以前的版本相比,他们提高了用于预训练和post-training数据的数量和质量。

而为了支持405B这样尺寸模型的大规模生产推理,Meta将模型从16位(BF16)量化到8位(FP8)数值,有效地降低了所需的计算需求,并允许模型在单个服务器节点内运行。

指令微调方面,Meta还提高了模型对用户指令的响应能力、增强了它遵循详细指令的能力,同时保证安全性。

在post-training阶段,Meta在预训练模型的基础上进行多轮对齐。

每一轮都包括监督微调(Supervised Fine-Tuning, SFT)、拒绝采样(Rejection Sampling, RS)和直接偏好优化(Direct Preference Optimization, DPO)。

他们使用合成数据生成来绝大部分SFT示例,并数次迭代。

此外,还采用了多种数据处理技术来将这些合成数据过滤到最高质量。

总计15T tokens使用Llama 2模型做清理和过滤,而代码和数学相关的数据处理流水线则主要借鉴了Deepseek的方法。

f0b463e2fc4e5df5911474140d4500c2.png

除了最基本的根据提示词响应,Meta官方表示,任何普通开发者可以用它做些高级的事情,比如:

  • 实时和批量推理

  • 监督微调

  • 针对特定应用评估模型

  • 持续预训练

  • 检索增强生成 (RAG)

  • 函数调用

  • 合成数据生成

而这背后也是由它的强大生态伙伴支持。

357838661a7679ae11887523cfa4458c.png

Datawhale发布Llama3.1 部署及微调教程

9bff1b63f70f31a25d10fcb22aa28815.jpeg

开源地址:https://github.com/datawhalechina/self-llm/tree/master/models/Llama3_1

参考链接:
[1]https://about.fb.com/news/2024/07/open-source-ai-is-the-path-forward/
[2]https://ai.meta.com/blog/meta-llama-3-1/

32199bdca717e4ac54542cf6a823dd3e.png

### 如何在 DeepSeek R1 上部署 Llama 模型 #### 准备工作 为了成功地将Llama模型部署到DeepSeek R1平台上,需先完成一系列准备工作。这包括但不限于获取必要的硬件资源和支持软件环境配置。确保拥有足够的计算能力来支持模型运行以及安装有Python解释器和PyTorch库等依赖项[^1]。 #### 获取预训练模型 对于想要快速启动并测试效果的情况来说,可以从公开渠道下载已经过良好训练的Llama权重文件作为起点。这些预先训练好的参数能够极大地减少自行训练所需的时间成本和技术难度[^2]。 #### 修改模型接口适配DeepSeek框架 由于不同平台间可能存在API差异,在实际操作前可能需要调整原生Llama代码中的部分函数定义或是数据输入/输出格式以更好地匹配目标系统的特性要求。此过程涉及到对原始项目结构的理解与改造技能。 #### 编写Dockerfile定制化镜像 考虑到跨设备移植性和一致性维护的需求,建议创建专门用于承载该特定版本应用实例的基础映像描述文档——即Dockerfile。通过这种方式可以简化后续重复性的设置流程,并有助于团队协作开发模式下的资源共享。 ```dockerfile FROM pytorch/pytorch:latest WORKDIR /app COPY . . RUN pip install -r requirements.txt CMD ["python", "main.py"] ``` #### 构建与推送容器镜像至仓库 利用上述准备完毕后的脚本文件执行构建命令生成最终可分发使用的二进制包;之后再将其上传保存于私有的或公共性质的服务端存储空间内以便随时拉取更新最新改动成果。 #### 发布上线及监控管理 最后一步则是正式对外提供在线访问权限之前做好充分的安全检测措施(如防火墙策略设定),同时建立一套完善的日志记录机制用来追踪异常情况的发生位置及其影响范围大小等问题所在之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值