线性代数让我想想:矩阵乘法的理解

矩阵乘法的理解

C m × n = A m × s × B s × n C_{m×n}=A_{m×s}×B_{s×n} Cm×n=Am×s×Bs×n

在理解矩阵乘法之前,我们先看一个显而易见的性质(性质Ⅰ):

用初等矩阵P左乘A,其结果与对A作相应的初等行变换相同;
用初等矩阵P右乘A,其结果与对A作相应的初等列变换相同。

由于右乘矩阵在几何意义上的理解是对称的,我们先不作讨论。只讨论行变换的一系列问题。

从这个给出的性质我们可以联想到,既然初等矩阵乘法是一种初等变换,那么任意的矩阵相乘是否也是对应的线性变换呢,或者说,就是对向量(被乘矩阵/向量组)进行不同程度的变形。

带着疑问进行查阅资料可以得到,根据【参考视频1】的证明、【参考视频2】、并结合上述猜想,矩阵乘法可以有三种不同角度的解释:

(1)矩阵的乘法是“所乘矩阵”对“被乘矩阵(列向量组)”进行的基变换。
即原向量不进行变化,变换基底。

(2)矩阵的乘法是“所乘矩阵”对“被乘矩阵(列向量组)”进行的线性变换。
即基底不进行变换,变换向量。

(3)线性变换作为映射的复合运算。

由于第一二种理解在几何上更加直观,并且基变换和线性变换在空间上是一体两面、相对的。我们对第二种理解进行讨论。

根据最开始的定理,我们能不能根据【性质Ⅰ】把初等变换推广到线性变换呢?——行,但不完全行。

因为【性质Ⅰ】要求方阵可逆,如果不可逆无法从单位矩阵通过初等变换映射到该矩阵。这里的不可逆带来的尴尬是来自【矩阵中“零”的出现】。

但是我们知道,矩阵某行倍乘0,可以得到一个不可逆阵。这个操作在几何上体现在向量在该方向上直接收缩到0。

由于任给方阵可逆与否不可知,于是我们给出猜想:任意一个方阵都可以由单位矩阵通过初等变换或者行倍乘0这两种变换来得到。

于是我们给出一种变换,记作“变换Ⅱ”:变换Ⅱ是初等变换和行倍乘0两种变换的统称。

有了这一步,我们开始讨论【变换Ⅱ】的几何意义,即讨论如下几种情况:

  • 行对换
  • 行倍乘于实数 k   ( k ≠ 0 ) k\ (k \neq 0) k (k=0)
  • 某行倍乘实数 k k k 的结果加到另一行
  • 行倍乘于实数 0

先明确矩阵每一行实际上对应的是向量的某个维度(如二维向量对应x和y轴两个维度),那么通过运算验证我们可以得到:

  • 行对换一一关于某两维角平分线的对称

    • 如二维向量的行对换,其几何意义为,根据x轴与y轴的角平分线对称变换。

    • 如三维向量的行对换,其几何意义为,
      根据 x O z x O z xOz 平面与 y O z y O z yOz 平面的角平分面对称变换;
      根据 x O y x O y xOy 平面与 y O z y O z yOz 平面的角平分面对称变换;
      根据 x O y x O y xOy 平面与 x O z x O z xOz 平面的角平分面对称变换。

  • 行倍乘于实数 k ( k ≠ 0 ) k(k \neq 0) k(k=0) 一一某个维度的伸缩。

  • 某行倍乘实数 k k k 的结果加到另一行一一某个维度的增减。

    n阶 (方) 矩阵进行初等变换: 第 p p p 行倍乘 k k k 后加到第 q q q 行的几何意义是, 对被乘向量进行如下操作:以该向量第 p p p 维的长度为单位,控制该向量第 q q q 维的长度在此先的基础上增长 k k k 个单位长度。

  • 行倍乘于实数 0 一一某个维度的坍缩(收缩为0)

这里存在一个问题:如果我们要对一个向量组进行变换操作,可不可以不通过以上的操作进行?答案是当然可以,比如对三维向量组进行每行+1操作,但是这样的操作并不是线性的,或者说,不满足向量空间的封闭运算性质,所以不予讨论。

于是上述讨论可以归结为:

乘一个矩阵的几何意义是,分步对一个向量组进行以下操作:①某维的伸缩(对应倍乘,表现为该维对应轴坐标扩大k倍)、②关于某两维角平分线的对称(对应行变换,表现为两维轴坐标互换)、③某维的增减(对应某行倍乘加到另一行,表现为该维增加/减少k个另一维轴坐标长)、④某维的坍缩(某行乘0,表现为该维对应轴的坐标置为零,且该步骤为最后一步)。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值