初等变换
初等变换分为行变换和列变换
初等变换之间用箭头连接起来
初等变换分为
- 交换两行/列
- 用k(k!=0)乘以某一行/列
- 某一行/列的L倍,加到另一行上去,L可为0
矩阵的初等变换与行列式的性质对比
行列式交换两行,用k乘某一行等,都是对行列式的值造成影响
但是矩阵的初等变换是对矩阵本身发生了改变,两者其实没有什么关系,而且初等变换并不需要保证是方阵
若A是方阵,此时初等变换与行列式又有联系
初等方阵
对E(单位矩阵)做一次初等变换得到的矩阵
- 交换两行
- 用k(k!=0)乘某一行
- 某行的L倍加到另一行上去
分别记作下图
初等方阵的性质
- 初等方阵均可逆
- 其逆矩阵也是初等矩阵
- 逆矩阵的转置也是初等方阵
初等矩阵左乘A,相当于对A实施同种行变换
初等矩阵右乘A,相当于对A实施同种列变换
可逆还有以下充要条件
初等变换法求逆矩阵
初等行变换法
(A,E)变成(E,A-1)
处理时需注意
- 先第1列,再第2列,再第3列
- 写整行,对整行进行操作
- 处理后,其对应行不再主动参与运算
- 变换过程中用箭头连接矩阵
- 只做初等行变换
- 不管是否可逆,如果左边化不成E,说明A不可逆