math: 四元数与欧拉角(RPY角)的相互转换

1 四元数

1.1 理论基础

在我们能够完全理解四元数之前,我们必须先知道四元数是怎么来的。四元数的根源其实是复数

四元数的概念是由爱尔兰数学家Sir William Rowan Hamilton发明的, 公式是:

i2=j2=k2=ijk=1 i 2 = j 2 = k 2 = i j k = − 1
`一般表达式`:
q=w+xi+yj+zk q = w + x i + y j + z k
`性质`:
|q|2=w2+x2+y2+z2=1 | q | 2 = w 2 + x 2 + y 2 + z 2 = 1
其中:i,j,k都是复数。并且通过公式:
i2=j2=k2=ijk i 2 = j 2 = k 2 = i j k
可以推出:
ij=k i j = k
jk=i j k = i
ki=j k i = j
通过公式:
ijk=1 i j k = − 1
i1=i i − 1 = − i
j1=j j − 1 = − j
k1=k k − 1 = − k
可以推出:
ji=k j i = − k
kj=i k j = − i
ik=j i k = − j
你可能已经注意到了,`i、j、k`之间的`关系`非常像`笛卡尔坐标系下` `单位向量的叉积`规则:
x⃗ ×y⃗ =z⃗   y⃗ ×x⃗ =z⃗  x → × y → = z →   ⟶   y → × x → = − z →
y⃗ ×z⃗ =x⃗   z⃗ ×y⃗ =x⃗  y → × z → = x →   ⟶   z → × y → = − x →
z⃗ ×x⃗ =y⃗   x⃗ ×z⃗ =y⃗  z → × x → = y →   ⟶   x → × z → = − y →
Hamilton自己也发现i、j、k虚数,可以被用来表达3个笛卡尔坐标系的`单位向量`i、j、k,并且仍然保持有虚数的性质,也即: i2=j2=k2=1 i 2 = j 2 = k 2 = − 1
1.1.1 三维空间下:
`向量差乘`即`向量积`可以被定义为: |a⃗ ×b⃗ |=|a⃗ ||b⃗ |sinθ | a → × b → | = | a → | ⋅ | b → | ⋅ sin ⁡ θ
`叉乘(向量的外积)`是物理里面常常用到的概念, 它是由两个向量得到一个新的向量的运算。一般我们都是从`几何意义`下手: 向量 a⃗  a → 和向量 b⃗  b → 叉乘,得到的是一个`垂直于`
  • 6
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值