[自动驾驶]LaneLines-P1

这篇博客介绍了一个车道识别项目,利用传统计算机视觉库OpenCV中的霍夫变换进行车道线检测。作者首先介绍了环境准备,使用普通Python环境和opencv处理图像。接着详细讲解了霍夫变换的原理,然后分享了处理思路,包括尝试提取白色和黄色车道线,并通过调整颜色空间来减少误识别。最后,作者提到这种方法的局限性和深度学习在车道识别中的优势。
摘要由CSDN通过智能技术生成

车道识别,基于传统的cv方法。之前刚好弄过一个《使用opencv实现通过摄像头自动输入阿里云身份宝验证码》,opencv弄起来驾轻就熟,直接搞起来吧!

代码 https://github.com/udacity/CarND-LaneLines-P1

环境准备

懒得去练自己的深度学习devbox,直接在笔记本上搞吧。普通python环境,再加上opencv和moviepy就好。ffmpeg没有的话也提示你怎么装了。我用的是python2,把python3那几个希腊字母的变量名改掉就好,毕竟alpha,beta,theta我还是知道怎么拼的。

import imageio
imageio.plugins.ffmpeg.download()

霍夫变换

霍夫变换之前没用过。先学习学习。看了几个资料,都讲得很啰嗦,我再简单重复一下吧。简单来说,霍夫变换可以检测一堆点中,那些点在同一直线上。
穿过一个点,我们知道可以有无数条直线。但是如果有2个点,那就可以确定一条直线了。那怎么来找在同一直线上的点呢?
我们可以枚举
穿过点1的直线 L11 ,直线 L12 ,直线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值