legged-gym环境配置

耗时两周时间才跑通的legged-gym开源项目,里面遇到了很多问题,在这分享一下自己的经验。一开始想在实验室的服务器上运行的,但是最后遇到问题:段错误。一直也没有找到很好的方式,可能跟我一开始更新显示驱动有关系吧。后来用的学弟的电脑:机械革命4060的显卡。(吐槽一句机械革命装双系统真的麻烦),接下来从头说一下这个项目的历程吧。

1.装双系统(这里没有太大的问题)

引用一下大佬的教程,真的很nice啊,装机强推。Windows 和 Ubuntu 双系统的安装和卸载_哔哩哔哩_bilibili

2.装完系统最麻烦的问题就是装驱动

进入系统建议先更新一下自己的库,亲测有效,可以解决很多库冲突的问题。

安装NVIDIA驱动

直接在更新与系统里面,选择NVIDIA驱动的更新(此处选择没有server的版本,我选择的是535的)

安装cuda

这里我选用的版本是12.1,这里在cuda的范围内就可以,并且后面安装pytorch的时候需要注意版本是否符合。

【服务器重装】ubuntu20.04-深度学习服务器环境配置_哔哩哔哩_bilibili

3.legged的环境配置

Ubuntu20.04 运行 Legged Gym(腿足强化学习)-CSDN博客

遇到的版本问题解决方案:

legged gym(包含isaac gym)丝滑安装教程_legged gym安装-CSDN博客

4.项目实战

(1)添加自己的机器人

isaacgym(legged_gym)学习 (一)—— 添加自己的机器人模型并训练_isaacgym在训练自己的模型过程中机器人倒了-CSDN博客

【动手学具身智能】legged_gym项目实践(一)启动训练与测试结果_isaacgym导入宇树h1-CSDN博客

<think>嗯,用户想要找关于legged_gym和Go2相关的技术资料或教程,特别是关于机器人仿真框架的内容。首先,我需要确认legged_gym是什么,以及Go2机器人的背景。根据用户提供的引用[1]和[2],legged_gym是ETH Zurich开发的一个基于NVIDIA Isaac Gym的开源项目,主要用于腿足式机器人的强化学习研究。而Go2应该是宇树科技(Unitree)的Go1或后续型号的机器人,可能是Go2。 接下来,用户可能需要具体的安装配置教程、如何将legged_gym与Go2模型结合使用,或者相关的强化学习训练方法。引用中提到的Isaac Gym环境安装教程和相关训练步骤可能是关键。需要检查是否有官方文档或社区资源支持这些内容。此外,用户可能对实际应用案例和优化方法感兴趣,比如如何调整参数以适应Go2的动力学模型,或者如何处理仿真到现实的迁移问题。 另外,用户的问题中提到了“simulation framework”,可能需要解释legged_gym在仿真中的作用,以及如何与其他工具如ROS或Gazebo集成。可能需要建议用户查阅ETH Zurich的官方GitHub仓库,以及Unitree的开发者资源,寻找是否有现成的模型或接口。同时,社区论坛如GitHub Issues、ROS Answers或者Reddit的机器人学习板块可能有相关讨论。 需要注意的是,用户可能遇到的环境配置问题,比如Ubuntu版本、CUDA支持、Python依赖等,这些在引用中提到的教程里可能有详细说明。此外,强化学习的训练流程、奖励函数设计、策略优化等也是用户潜在的需求点。最后,应该提醒用户关注仿真与真实机器人的差异,以及如何进行有效的策略迁移,确保学习的模型能够在实际Go2机器人上运行。</think>### 关于Legged Gym与Go2机器人的仿真框架技术资料 Legged Gym是基于NVIDIA Isaac Gym开发的腿足机器人强化学习框架[^2],而Go2是宇树科技(Unitree)推出的四足机器人。以下是相关技术资料和教程的整理: --- #### 1. **Legged Gym的核心资源** - **官方代码仓库**: ETH Zurich的[Legged Gym GitHub仓库](https://github.com/leggedrobotics/legged_gym)包含环境配置、训练脚本和示例。 - **关键依赖**: 需要配置NVIDIA Isaac Gym(需CUDA支持)和PyTorch,具体步骤参考引用[1]的安装教程。 - **训练示例**: ```bash # 示例训练命令(需在Isaac Gym环境中运行) python scripts/train.py --task=go2_flat ``` --- #### 2. **Go2机器人仿真集成** - **模型适配**: Legged Gym默认支持ANYmal等机器人模型,若需集成Go2,需完成以下步骤: 1. 从Unitree官方获取Go2的URDF模型文件。 2. 修改Legged Gym的`resources/robots`目录,添加Go2的动力学参数[^1]。 3. 调整奖励函数以适应Go2的运动特性(如步态稳定性)。 - **仿真到现实(Sim2Real)**: ETH团队提出了域随机化(Domain Randomization)方法,可通过修改`configs/ppo_go2.yaml`中的噪声参数提升策略迁移性[^2]。 --- #### 3. **推荐教程与实践指南** - **Isaac Gym基础教程**: - [官方文档](https://developer.nvidia.com/isaac-gym)中的“Getting Started”部分。 - 引用[1]提到的配置教程,详细说明Ubuntu环境依赖和常见错误修复。 - **Legged Gym进阶应用**: - 使用`legged_gym`训练自定义任务(如爬楼梯、抗扰动):需修改`envs/legged_robot.py`中的观测空间和奖励函数。 - 可视化工具:通过`isaacgym.gymutil`实时监控关节状态和足端力。 --- #### 4. **社区与扩展资源** - **GitHub Issues**: 在Legged Gym仓库的Issues中搜索“Go2”或“Unitree”,部分用户已分享适配经验。 - **ROS集成**: 若需与ROS通信,可通过`rosbridge`将Legged Gym的策略部署到真实Go2机器人。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值