机器人基于isaacgym的强化学习框架的迁移训练

目前比较火爆的开源:

  • 四足框架为legged_gym
  • 双足框架为humanoid-gym

humanoid-gym

本节以迁移小hi硬件模型至humanoid-gym训练架构为例:

可以分为以下几步

  1. urdf模型路径验证。urdf模型中需要有路径指示出mesh(.stl)
  2. state调整。根据不通关节的命名进行修改
    • initial state值(=DoF)
    • PD control系数(=DoF)
  3. Observation的数量
  4. _reward_base_height上矩阵维度不对。(待解决,2024.07.18,疑似是foot indice没有读入正确)。
    • feet_indice是从feet_names中读取foot在
    • feet_names是从hi_cfg中定义的foot_name中识别出来的
    • 因此需要找到hi_cfg中修改foot_name定义
    • <问题解决>
  5. 矩阵1和矩阵2维度不通,无法进行乘积!
    • 其中需要对齐的是291和219。219*768是给派定义的输入维度。
    • pai的219和hi的291是由num_critic_obs,即评论家网络的观测维度决定的。
    • pai网络的219可以追溯到Hi_cfg.env中的参数num_privileged_obs = int(c_frame_stack * (single_num_privileged_obs)),3*73=219。
    • 下面确定hi的291输入维度。可以追溯到hi_env.compute_observations中的self.privileged_obs_buf
    • hi_env中的critic_history默认按stack=3,在初始化的时候默认的第一轮history为73个0,但是self.privileged_obs_buf计算出来为109*2,cat()在一起就变成了291。
    • 因此解决问题的关键在于,因此需要找到hi_cfg中修改single_num_privileged_obs,为109即可
    • <问题解决>

至此调通,可以进行正常训练。

Legged_gym

本节以迁移小pi硬件模型至legged_gym训练架构为例:

分为几步:

  1. 直接拷贝pai_config和pai_env进入envs目录下。开始编译调试
  2. 在make_env步骤中,legged_robot._process_of_props()中,的soft limits没有被定义。**<尚未明晰soft limits的作用>**目前先注释掉soft limits观察效果。
    • 在make_env中,pai_env.reset_idx()中的obs_history没有被定义。obs_history在humanoid-gym中的legged_robot._init_buffers是被额外定义为actor和critic的观测历史,也同时引入了frame_stack的概念,是利用基于C++的deque库,是一个双向队列(double-ended queue),用来作为stl的容器。
      • [问题]:为什么legged_robot不需要观测历史?[答]zzs:观测历史主要是为了利用状态估计获取线速度。legged_gym里是默认输入量有线速度这一项,但是实际中线速度是无法直接获取的。
    • 在make_env中,pai_env.compute_observations的self.privileged_obs_buf定义中:
      • base_eular_xyz、env_friction、body_mass未被定义,已复制humanoid定义
      • cat()维度不对,已解决
      • 至此make_env中的问题解决完毕。
  3. 进入make_alg_runner阶段。
    • check_termination

遗留问题

  • legged_gym:soft limits的作用
【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业毕设项目,也可以作为小白实战演练初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研多多调试实践。 将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip将预训练好的深度强化学习模型应用在真实机器人中(实践源码).zip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值