【考研数学】几个重要定理、结论的证明过程汇总 | 持续更新……

更新情况

23/10/19:增加了积分中值定理及积分第一中值定理的证明。
23/10/23:增加了矩阵转置、伴随矩阵及向量的秩相关的证明。
23/11/01:增加了定积分周期性质的证明。
23/11/13:增加了保号性的证明。
23/11/13:增加了秩为 1 方阵的性质的证明。


引言

前阵子整理往年真题的时候,发现有一个证明题让我证明拉格朗日中值定理。要不是我才学完微分,我还真有些下不了笔,只记得可以用罗尔中值定理证明。写微分部分的文章时,由于内容太多,我就没有加上去。于是我打算对这些平常咱们都用的到的定理和结论,都去证明一篇,巩固基础,也减少对证明题的恐惧。

我就按照去年的数一大纲,把里面提到的定理以及我认为重要的定理、结论,都放在本文中进行汇总。有可能会内容好多,后续随着复习进度的进行,也会补充内容进来。


高等数学

一、函数、极限、连续

保号性

lim ⁡ x → a f ( x ) = A > 0 \lim_{x\to a}f(x)=A>0 limxaf(x)=A>0 ,则 ∃ δ > 0 , w h e n   0 < ∣ x − a ∣ < δ , w e   h a v e   f ( x ) > 0. \exist \delta>0,when\space 0<|x-a|<\delta,we \space have \space f(x)>0. δ>0,when 0<xa<δ,we have f(x)>0.

证明: 由极限定义, ∀ ϵ > 0 , ∃ δ > 0 , w h e n   0 < ∣ x − a ∣ < δ , w e   h a v e   f ( x ) − A > − ϵ \forall \epsilon>0,\exist \delta>0,when\space 0<|x-a|<\delta,we \space have \space f(x)-A>-\epsilon ϵ>0,δ>0,when 0<xa<δ,we have f(x)A>ϵ ,即 f ( x ) > A − ϵ f(x)>A-\epsilon f(x)>Aϵ ,取 ϵ = A / 2 \epsilon=A/2 ϵ=A/2 ,于是 f ( x ) > A / 2 > 0 f(x)>A/2>0 f(x)>A/2>0 ,证毕。

为什么要取 A / 2 A/2 A/2 ,我如果取得大一点不就小于 0 了吗?是,取了大于 A 就小于 0 ,可是这有什么影响呢,我们关键是要证明存在这样 δ \delta δ
另外注意函数是邻域内保号,也就是局部保号,而数列极限是全局保号。

夹挤定理

在这里插入图片描述

二、一元函数微分学

罗尔中值定理(Rolle)

y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b)上可导,且有 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ,则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

证明: 由函数 f ( x ) f(x) f(x) 在闭区间上连续,可知, f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] 上存在最小值 m m m 和最大值 M M M

C a s e 1 : m = M : Case 1:m=M: Case1:m=M:
显然,此时函数 f ( x ) ≡ M f(x) \equiv M f(x)M ,即恒为一个常数,任取 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b),均有 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

C a s e 2 : m < M : Case 2:m<M: Case2:m<M:
f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b) ,则两端点处必然只有最小值或最大值,甚至一个都不是。因此必然有一个最值在 ( a , b ) (a,b) (a,b) 上取到。不妨假设最大值 M M M ( a , b ) (a,b) (a,b) 上取到,即存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 f ( ξ ) = M f(\xi)=M f(ξ)=M
x = ξ x=\xi x=ξ f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b) 的极大值点,故有 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0 或在该点处导数不存在。又因为函数在 ( a , b ) (a,b) (a,b) 内可导,故 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0 ,原命题得证。

拉格朗日中值定理(Lagrange)

y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b)上可导,则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 f ′ ( ξ ) = f ( b ) − f ( a ) b − a . f'(\xi)=\frac{f(b)-f(a)}{b-a}. f(ξ)=baf(b)f(a). 证明: 构造函数 g ( x ) g(x) g(x) ,其表达式如下: g ( x ) = f ( x ) − f ( a ) − f ( b ) − f ( a ) b − a ( x − a ) g(x)=f(x)-f(a)-\frac{f(b)-f(a)}{b-a}(x-a) g(x)=f(x)f(a)baf(b)f(a)(xa) 显然, g ( x ) g(x) g(x) 同样在 [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 上可导,且有 g ( b ) = g ( a ) = 0 g(b)=g(a)=0 g(b)=g(a)=0 ,根据罗尔定理,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 g ′ ( ξ ) = 0 g'(\xi)=0 g(ξ)=0 ,即 g ′ ( ξ ) = f ′ ( ξ ) − f ( b ) − f ( a ) b − a , g'(\xi)=f'(\xi)-\frac{f(b)-f(a)}{b-a}, g(ξ)=f(ξ)baf(b)f(a), 整理即可得到原命题的结论。

柯西中值定理(Cauchy)

f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b)上可导,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0 ,则存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) . \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\xi)}{g'(\xi)}. g(b)g(a)f(b)f(a)=g(ξ)f(ξ). 证明: g ( x ) g(x) g(x) 应用拉氏定理,有 g ( b ) − g ( a ) = g ′ ( η ) ( b − a ) g(b)-g(a)=g'(\eta)(b-a) g(b)g(a)=g(η)(ba) ,其中 a < η < b a < \eta < b a<η<b ,故 b − a ≠ 0 b-a \ne 0 ba=0 。由 g ′ ( x ) ≠ 0 g'(x) \ne 0 g(x)=0 ,可知 g ( b ) − g ( a ) ≠ 0 g(b)-g(a) \ne 0 g(b)g(a)=0 ,因此可构造函数 φ ( x ) \varphi(x) φ(x) ,其表达式为 φ ( x ) = f ( x ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ( x ) . \varphi(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g(x). φ(x)=f(x)g(b)g(a)f(b)f(a)g(x). 显然, φ ( x ) \varphi(x) φ(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b)上可导,且 φ ( a ) = f ( a ) g ( b ) − f ( a ) g ( a ) − f ( b ) g ( a ) + f ( a ) g ( a ) g ( b ) − g ( a ) = f ( a ) g ( b ) − f ( b ) g ( a ) g ( b ) − g ( a ) = φ ( b ) . \varphi(a)=\frac{f(a)g(b)-f(a)g(a)-f(b)g(a)+f(a)g(a)}{g(b)-g(a)}=\frac{f(a)g(b)-f(b)g(a)}{g(b)-g(a)}=\varphi(b). φ(a)=g(b)g(a)f(a)g(b)f(a)g(a)f(b)g(a)+f(a)g(a)=g(b)g(a)f(a)g(b)f(b)g(a)=φ(b). 根据罗尔定理,存在 ξ ∈ ( a , b ) \xi \in (a,b) ξ(a,b) ,使得 φ ′ ( ξ ) = 0 \varphi'(\xi)=0 φ(ξ)=0 ,即 f ′ ( ξ ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ξ ) = 0 , f'(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)}g'(\xi)=0, f(ξ)g(b)g(a)f(b)f(a)g(ξ)=0, g ′ ( ξ ) ≠ 0 g'(\xi) \ne 0 g(ξ)=0 ,整理即可到原命题结论。

三、一元函数积分学

原函数可导

证明连续函数 F ( x ) = ∫ 0 x f ( t ) d t F(x)=\int_0^xf(t)dt F(x)=0xf(t)dt 可导,且 F ′ ( x ) = f ( x ) . F'(x)=f(x). F(x)=f(x).

证明: 要证明一个函数可导,即证明极限 lim ⁡ Δ x → 0 Δ y Δ x \lim_{\Delta x\to 0}\frac{\Delta y}{\Delta x} Δx0limΔxΔy 存在。 Δ F ( x ) = ∫ 0 x + Δ x f ( t ) d t − ∫ 0 x f ( t ) d t = ∫ x x + Δ x f ( t ) d t . \Delta F(x)=\int_0^{x+\Delta x}f(t)dt-\int_0^xf(t)dt=\int_x^{x+\Delta x}f(t)dt. ΔF(x)=0x+Δxf(t)dt0xf(t)dt=xx+Δxf(t)dt. 由函数连续,根据积分中值定理,存在 ξ ∈ [ x , x + Δ x ] \xi \in [x,x+ \Delta x] ξ[x,x+Δx] ,使得 Δ F ( x ) = f ( ξ ) Δ x . \Delta F(x)=f(\xi)\Delta x. ΔF(x)=f(ξ)Δx. 故极限 lim ⁡ Δ x → 0 Δ F ( x ) Δ x = lim ⁡ Δ x → 0 f ( ξ ) = f ( x ) . \lim_{\Delta x\to 0}\frac{\Delta F(x)}{\Delta x}=\lim_{\Delta x \to 0}f(\xi)=f(x). Δx0limΔxΔF(x)=Δx0limf(ξ)=f(x). 故原命题得证。

积分中值定理证明

在这里插入图片描述
在这里插入图片描述

积分中值定理推广

解决了积分中值定理不能取开区间的问题。
在这里插入图片描述

积分第一中值定理

在这里插入图片描述

在这里插入图片描述

周期性质的证明

f ( x ) f(x) f(x) 是周期为 T T T 的连续函数,则有(周期函数定积分平移性质) ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x \int_a^{a+T}f(x)dx=\int_0^Tf(x)dx aa+Tf(x)dx=0Tf(x)dx 证明: 可以将命题视为证明一个函数恒为一个常数,因此可以考虑证明其导数恒为 0 。

g ( a ) = ∫ a a + T f ( x ) d x , g ′ ( a ) = f ( a + T ) − f ( a ) g(a)=\int_a^{a+T}f(x)dx,g'(a)=f(a+T)-f(a) g(a)=aa+Tf(x)dx,g(a)=f(a+T)f(a) ,由 f ( a ) f(a) f(a) 周期为 T T T ,可知 g ′ ( a ) ≡ 0 g'(a) \equiv 0 g(a)0 ,因此 g ( a ) g(a) g(a) 恒为一个常数,取 a = 0 a=0 a=0 ,原命题即得证。


线性代数

一、矩阵的秩

矩阵转置及其乘积的秩

即证明矩阵的秩等于其转置矩阵的秩,也等于其和转置矩阵乘积的秩: r ( A ) = r ( A T ) = r ( A A T ) . r(\pmb{A})=r(\pmb{A}^T)=r(\pmb{AA}^T). r(A)=r(AT)=r(AAT).

证明: 对于前半部分( r ( A ) = r ( A T ) r(\pmb{A})=r(\pmb{A}^T) r(A)=r(AT)),我们可以通过矩阵本身的性质来得到。矩阵的行向量组的秩等于列向量组的秩等于矩阵的秩,而一个矩阵转置后,行向量组变为了其列向量组,显然秩相等。

对于另一部分( r ( A ) = r ( A A T ) r(\pmb{A})=r(\pmb{AA}^T) r(A)=r(AAT)),我们的思路是通过齐次线性方程组同解来得到。我们知道,方程组的同解变形,对于矩阵就是做初等行变换。也就是说,如果如果两个方程组同解,那它们的系数矩阵就可以相互通过初等行变换相互得到,也就是系数矩阵等价,于是可以得到它们的秩相等。

考虑两个齐次线性方程组: A X = 0 , ( A A T ) X = 0 \pmb{AX=0,(AA^T)X=0} AX=0,(AAT)X=0 。若解 X 0 \pmb{X_0} X0 满足 A X 0 = 0 \pmb{AX_0=0} AX0=0 ,等式两边可同时左乘一个 A T \pmb{A}^T AT ,有 A T A X 0 = 0 \pmb{A}^T\pmb{AX_0=0} ATAX0=0,即可以得到 A , A T A \pmb{A,A^TA} A,ATA 同解,有 r ( A ) = r ( A T A ) r(\pmb{A})=r(\pmb{A^TA}) r(A)=r(ATA) ,对后者进行转置,有 r ( A ) = r ( ( A T A ) T ) = r ( A A T ) r(\pmb{A})=r(\pmb{(A^TA})^T)=r(\pmb{AA^T}) r(A)=r((ATA)T)=r(AAT) ,一方面得证。

另一方面,若解 X 0 X_0 X0 满足 ( A A T ) X = 0 (\pmb{AA^T)X=0} (AAT)X=0 ,方程两边同时左乘 X 0 T \pmb{X_0}^T X0T ,有 ( X 0 T A ) A T X = 0 \pmb{(X_0^TA)A^TX=0} (X0TA)ATX=0,可写成 ( A T X 0 ) T ( A T X 0 ) = 0 \pmb{(A^TX_0)^T(A^TX_0)=0} (ATX0)T(ATX0)=0 。显然, A T X 0 \pmb{A^TX_0} ATX0 是一个向量,记为 α = ( a 1 , a 2 , ⋯   , a n ) T \pmb{\alpha}=(a_1,a_2,\cdots,a_n)^T α=(a1,a2,,an)T ,即 α T α = a 1 2 + a 2 2 + ⋯ + a n 2 = 0 \pmb{\alpha^T\alpha}=a_1^2+a_2^2+\cdots+a_n^2=0 αTα=a12+a22++an2=0 ,可知 a 1 = a 2 = ⋯ = a n = 0 a_1=a_2=\cdots=a_n=0 a1=a2==an=0 ,即 α = 0 \pmb{\alpha=0} α=0 ,于是有 A T X 0 = 0 \pmb{A^TX_0=0} ATX0=0 ,我们便得到了 r ( A A T ) = r ( A T ) = r ( A ) r(\pmb{AA^T})=r(\pmb{A^T})=r(\pmb{A}) r(AAT)=r(AT)=r(A)

伴随矩阵的秩

在这里插入图片描述

证明过程如下:
在这里插入图片描述

二、关于向量的秩

证明:一个非零列向量乘以另一个非零列向量的转置的秩为 1 ;即对任何非零 n n n 维列向量 α , β \pmb{\alpha,\beta} α,β β α T \pmb{\beta\alpha}^T βαT 的秩为 1 。

证明: β = ( b 1 , b 2 , ⋯   , b n ) T \pmb{\beta}=(b_1,b_2,\cdots,b_n)^T β=(b1,b2,,bn)T ,有 β α T = [ b 1 α T b 2 α T ⋮ b n α T ] \pmb{\beta\alpha}^T=\begin{bmatrix} b_1\pmb{\alpha}^T \\ b_2\pmb{\alpha}^T \\ \vdots \\ b_n\pmb{\alpha}^T \end{bmatrix} βαT= b1αTb2αTbnαT ,各行之间彼此成比例,且 α , β \pmb{\alpha,\beta} α,β 非零向量,故 r ( β α T ) = r ( α T ) = 1 r(\pmb{\beta\alpha}^T)=r(\pmb{\alpha}^T)=1 r(βαT)=r(αT)=1

秩为 1 方阵的特征值分析

n n n 阶方阵 A \pmb{A} A 的秩为 1 时,如果 A \pmb{A} A 的迹不为 0 ,则其可以相似对角化,否则不可以相似对角化。

证明: 方阵 A \pmb{A} A 的秩为 1 ,于是存在两个非零向量 β , γ \pmb{\beta,\gamma} β,γ ,使得 A = β γ T \pmb{A=\beta\gamma^T} A=βγT 。则 A 2 = β γ T β γ T = γ T β ( β γ T ) = t r ( A ) ⋅ A \pmb{A}^2=\pmb{\beta\gamma^T\beta\gamma^T=\gamma^T\beta(\beta\gamma^T)=tr(A)\cdot A} A2=βγTβγT=γTβ(βγT)=tr(A)A

A \pmb{A} A 的特征值为 λ \lambda λ,属于特征值 λ \lambda λ 的特征向量为 α \pmb{\alpha} α,有 A α = λ α , A 2 α = λ 2 α \pmb{A\alpha}=\lambda\pmb{\alpha,A^2\alpha=\lambda^2\alpha} Aα=λα,A2α=λ2α,代入上面的结论,有 A 2 α = t r ( A ) ⋅ A ⋅ α = t r ( A ) ⋅ λ α = λ 2 α \pmb{A^2\alpha=tr(A)\cdot A\cdot\alpha=tr(A)\cdot\lambda\alpha=\lambda^2\alpha} A2α=tr(A)Aα=tr(A)λα=λ2α ,在最后一个等式处移项,有 ( λ 2 − t r ( A ) λ ) α = 0 \big(\pmb{\lambda^2-tr(A)\lambda}\big)\pmb{\alpha=0} (λ2tr(A)λ)α=0 ,由于 α \pmb{\alpha} α 非零,故 λ 2 − t r ( A ) λ = 0 \lambda^2-tr(A)\lambda=0 λ2tr(A)λ=0 ,解得 λ = 0 \lambda=0 λ=0 λ = t r ( A ) \lambda=tr(A) λ=tr(A) 。设 A \pmb{A} A n n n 个特征值为 λ 1 , λ 2 , ⋯   , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,,λn ,则 t r ( A ) = ∑ λ i tr(A)=\sum\lambda_i tr(A)=λi 。如果取 λ = t r ( A ) \lambda=tr(A) λ=tr(A) 的特征值不是单根,那所有特征值的和就不等于 t r ( A ) tr(A) tr(A) ,因此, A \pmb{A} A 特征值中,0 为 n − 1 n-1 n1 重根, t r ( A ) tr(A) tr(A) 为单根。

下面从方程组的角度来论证,设齐次线性方程组 A x = 0 \pmb{Ax=0} Ax=0 r ( A ) = 1 r(\pmb{A})=1 r(A)=1 ,可知其基础解系中有 n − 1 n-1 n1 个线性无关的解向量。又由特征值定义, A x = 0 x \pmb{Ax=0x} Ax=0x ,可知 0 是 A \pmb{A} A 的特征值,基础解系中的解向量均是属于 0 的特征向量,即特征值 0 有 n − 1 n-1 n1 个线性无关的特征向量。

当迹不为 0 时,属于特征值 t r ( A ) tr(A) tr(A) 的线性无关的向量有一个,于是总共有 n n n 个线性无关的特征向量,故可以相似对角化;当迹为 0 时,所有特征值 λ i \lambda_i λi 均为 0 ,0 变为 n n n 重根,但只有 n − r ( A − λ i E ) = n − r ( A ) = n − 1 n-r(\pmb{A}-\lambda_i\pmb{E})=n-r(A)=n-1 nr(AλiE)=nr(A)=n1 个线性无关的特征向量,故不可以相似对角化。


写在最后

会不断更新的,更新内容与时间会放在开头部分。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 好的。 1. 两条相交直线的交点到这两条直线所在直线的距离之积相等: 这个结论可以通过三角形面积公式证明。 2. 全等三角形: 如果一个三角形的三条边长都相等,那么这个三角形就是等边三角形。这个结论可以通过比较边长来证明。 3. 三角形内角和为 180°: 如果将一个三角形折叠成一条直线,那么这条直线的角度之和就是 180°。这个结论可以通过平面角的定义来证明。 4. 奇偶性: 如果一个整数能被 2 整除,那么它就是偶数;如果一个整数不能被 2 整除,那么它就是奇数。这个结论可以通过对 2 取模运算来证明。 ### 回答2: 数学证明作为数学重要部分,一方面用于验证数学理论的正确性,另一方面也可以带来乐趣和游戏性。下面是几个有趣的数学证明的推荐: 1. 无理数的证明数学家乔治·卡托的证明中,通过建立实数和有理数之间的一一对应关系来证明实数集合比有理数集合更大。该证明引发了数学上著名的“势”悖论。 2. 四色定理证明:四色定理指的是地图上用四种颜色恰好可以标记出相邻国家,使得没有两个相邻国家颜色相同。虽然该定理证明非常复杂,但是它展现了数学中引人入胜的思想和证明技巧。 3. 费尔马大定理证明:费尔马大定理数学中最有名的未解难题之一,它指出$x^n + y^n = z^n$(其中n大于2)没有正整数解。直到20世纪才由数学家安德鲁·怀尔斯证明,展现了数学中惊人的智慧和创造力。 4. 魔幻方阵的证明:魔幻方阵是一个规则的方形格子,其中每行、每列和对角线上的数字之和都相等。通过构建方程组和矩阵,可以证明魔幻方阵的存在性和特殊性。 5. π的无理性证明:π是一个无理数,即无法表示为两个整数的比值。证明π的无理性需要运用到数学的分析方法和逻辑演绎,给人们带来了探索无穷数学世界的乐趣。 这些有趣的数学证明不仅展示了数学的美妙和深刻,也让我们深入了解数学的逻辑思维和推理方法,丰富了我们对数学的理解和兴趣。 ### 回答3: 数学证明数学领域中重要的部分,有时可能会让人感到枯燥和困惑。然而,也有一些有趣的数学证明,能够让人对数学产生兴趣。以下是几个有趣的数学证明的例子: 1. 无理数的存在性证明证明根号2是无理数。这个证明最早由古希腊数学家赫罗多图斯完成。它使用反证法,假设根号2是有理数,然后推导出一个矛盾的结论证明了根号2必然是无理数。 2. 费马大定理证明:费马大定理由法国数学家费马提出,它声称当n大于2时,方程x^n + y^n = z^n没有整数解。这个问题困扰了数学几个世纪,直到1995年英国数学家安德鲁•怀尔斯证明了这个定理。这个证明十分复杂,但也非常有趣。 3. 四色定理证明:四色定理声称任何平面上的地图都可以用四种颜色进行着色,且相邻的地区颜色不同。这个定理在19世纪和20世纪早期引起了人们的广泛关注。最终,在1976年,数学家伯纳斯•休斯证明了这个定理。他的证明综合运用了图论和计算机技术,是数学史上的一个重要里程碑。 这些例子只是数学证明中的一小部分,展示了数学的美妙和神奇之处。数学证明不仅可以增加我们对数学的兴趣,还有助于培养我们在逻辑推理和问题解决方面的能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Douglassssssss

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值