积分第一中值定理

前置知识:黎曼积分的概念

积分的单调性

f , g f,g f,g [ a , b ] [a,b] [a,b]上可积,如果在 [ a , b ] [a,b] [a,b] f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),则有

∫ a b f ( x ) d x ≤ ∫ a b g ( x ) d x \int_a^bf(x)dx\leq \int_a^bg(x)dx abf(x)dxabg(x)dx

特别地,如果存在 m , M m,M m,M,使得 m ≤ f ( x ) ≤ M m\leq f(x)\leq M mf(x)M,则有

m ( b − a ) ≤ ∫ a b f ( x ) d x ≤ M ( b − a ) m(b-a)\leq \int _a^bf(x)dx\leq M(b-a) m(ba)abf(x)dxM(ba)

证明: [ a , b ] [a,b] [a,b] g ( x ) − f ( x ) ≥ 0 g(x)-f(x)\geq 0 g(x)f(x)0,所以

∫ a b g ( x ) d x − ∫ a b f ( x ) d x = ∫ a b ( g ( x ) − f ( x ) ) d x = lim ⁡ σ ( g − f , T ) ≥ 0 \int _a^bg(x)dx-\int _a^bf(x)dx=\int _a^b(g(x)-f(x))dx=\lim\sigma(g-f,T)\geq 0 abg(x)dxabf(x)dx=ab(g(x)f(x))dx=limσ(gf,T)0


积分第一中值定理

f f f [ a , b ] [a,b] [a,b]上连续, g g g [ a , b ] [a,b] [a,b]可积且 g ( x ) g(x) g(x) [ a , b ] [a,b] [a,b]上不变号,则 ∃ ξ ∈ [ a , b ] \exist \xi \in [a,b] ξ[a,b],使得

∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int _a^bf(x)g(x)dx=f(\xi)\int_a^bg(x)dx abf(x)g(x)dx=f(ξ)abg(x)dx

特别地,当 g ( x ) ≡ 1 g(x)\equiv 1 g(x)1时,原式变为

∫ a b f ( x ) d x = f ( ξ ) ( b − a ) \int_a^bf(x)dx=f(\xi)(b-a) abf(x)dx=f(ξ)(ba)

证明: 不妨设 g ( x ) ≥ 0 g(x)\geq 0 g(x)0,记 M M M m m m f f f [ a , b ] [a,b] [a,b]上的最大值和最小值,由积分的单调性,得

m ∫ a b g ( x ) d x ≤ ∫ a b f ( x ) g ( x ) d x ≤ M ∫ a b g ( x ) d x m\int _a^bg(x)dx\leq \int _a^bf(x)g(x)dx\leq M\int _a^bg(x)dx mabg(x)dxabf(x)g(x)dxMabg(x)dx

∫ a b g ( x ) = 0 \int _a^bg(x)=0 abg(x)=0,则显然 ∫ f ( x ) g ( x ) d x = 0 \int f(x)g(x)dx=0 f(x)g(x)dx=0,此时式子对于任意 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b]都成立。

∫ a b g ( x ) > 0 \int _a^bg(x)>0 abg(x)>0,则

m ≤ ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x ≤ M m\leq \dfrac{\int_a^bf(x)g(x)dx}{\int _a^bg(x)dx}\leq M mabg(x)dxabf(x)g(x)dxM

连续函数的介值定理可得,存在 ξ ∈ [ a , b ] \xi\in[a,b] ξ[a,b],使得

f ( ξ ) = ∫ a b f ( x ) g ( x ) d x ∫ a b g ( x ) d x f(\xi)=\dfrac{\int_a^bf(x)g(x)dx}{\int _a^bg(x)dx} f(ξ)=abg(x)dxabf(x)g(x)dx

由此得证。


例题

求证 lim ⁡ n → + ∞ ∫ n n + π sin ⁡ x x d x = 0 \lim\limits_{n\rightarrow +\infty}\int_n^{n+\pi}\dfrac{\sin x}{x}dx=0 n+limnn+πxsinxdx=0

证明:
\qquad 由积分第一中值定理可得, ∃ ξ ∈ [ n , n + π ] \exist\xi\in[n,n+\pi] ξ[n,n+π],使得

∣ ∫ n n + π sin ⁡ x x d x ∣ = ∣ π ( sin ⁡ ξ ξ ) ∣ ≤ π n |\int_n^{n+\pi}\dfrac{\sin x}{x}dx|=|\pi(\dfrac{\sin \xi}{\xi})|\leq \dfrac{\pi}{n} nn+πxsinxdx=π(ξsinξ)nπ

因为当 n → + ∞ n\rightarrow +\infty n+时, π n → 0 \dfrac{\pi}{n}\rightarrow 0 nπ0,所以 lim ⁡ n → + ∞ ∫ n n + π sin ⁡ x x d x = 0 \lim\limits_{n\rightarrow +\infty}\int_n^{n+\pi}\dfrac{\sin x}{x}dx=0 n+limnn+πxsinxdx=0

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 积分中值定理指出,在一个定义域内的某一函数的积分,可以通过在这个定义域中某一点上取函数值与定义域长度的乘积来近似计算,而微分中值定理则认为,在某一点上,函数的导数可以近似由函数在该点左右两点上取值的差值除以它们之间的距离所得。 ### 回答2: 积分中值定理和微分中值定理是微积分中两个重要的定理。 积分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上连续且可积,那么存在一个$\xi$在区间$(a, b)$内,使得$\int_a^b f(x)dx = f(\xi)(b-a)$。简单说,积分中值定理表明在一个连续函数的定积分中,一定存在某个点,使得该点的函数值与其定义域上的平均值相等。 微分中值定理是指如果函数$f(x)$在闭区间$[a, b]$上可导且连续,那么存在一个$\xi$在开区间$(a, b)$内,使得$f'(\xi) = \frac{f(b)-f(a)}{b-a}$。简单说,微分中值定理表明在一个可导函数的导数中,一定存在某个点满足导数等于该函数在闭区间上的斜率。 两个定理的区别主要在于对象和定理的表达方式上。积分中值定理是关于函数在闭区间上定积分的取值与函数在内部某个点上的函数值之间的关系。而微分中值定理则是关于函数在闭区间上的导函数与函数在内部某个点上的斜率之间的关系。 ### 回答3: 积分中值定理和微分中值定理都属于微积分中的重要定理,但它们的应用对象不同,所表示的意义也有所差异。 积分中值定理是用来描述定积分的性质的定理,它指出如果一个函数在闭区间[a,b]上连续,并且满足一定的条件,那么在[a,b]上必然存在一点c,使得函数在c处的取值等于整个区间上函数的平均值。具体来说,对于函数f(x)在闭区间[a,b]上,存在一点c,使得∫[a,b]f(x)dx = (b-a)f(c)。 微分中值定理是用来描述导数的性质的定理,它指出如果一个函数在闭区间[a,b]上是可导的,并且满足一定的条件,那么在(a,b)内必然存在一点c,使得函数在c处的导数等于函数在该区间上两个端点的函数值的差与对应的导数的乘积的比值。具体来说,对于函数f(x)在闭区间[a,b]上可导,存在一点c,使得f'(c) = (f(b)-f(a))/(b-a)。 综上所述,积分中值定理和微分中值定理的不同主要体现在它们的应用对象和所代表的意义上。积分中值定理描述了整个区间上函数的平均值与函数在某一点处的关系,而微分中值定理描述了函数在某一区间上的导数与函数在该区间内两个端点处函数值的关系。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值