线性代数学习笔记——第七十八讲——用正交变换化二次型为标准型

本文详细解析了正交变换的概念,并通过实例演示如何将任意实二次型转化为标准形式,这一过程对于理解线性代数中的矩阵理论至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1. 正交变换的定义;

任一n元实二次型都可用正交变换化为标准形  

 

2.  用正交变换化二次型为标准形示例 

 

 

### 如何使用非退线性变换将二次型标准型 #### 使用正交变换 当目标是保持几何形状不变时,可以选择正交变换来实现这一目的。这种方的特点在于它能够确保转换后的形式不仅简了原表达式,而且保留了几何特性[^1]。 对于给定的一个二次型 \(f(x_1,x_2,\ldots,x_n)\),如果希望将其通过非退线性变换转为标准形: 1. **构建对应的实对称矩阵**:任何二次型都可以表示为其对应变量向量与一个实对称矩阵相乘的形式\[ f(\mathbf{x})=\mathbf{x}^TA\mathbf{x}\]其中 \(\mathbf{x}\) 是列向量,\(A\) 是由二次型系数构成的实对称方阵[^2]。 2. **找到一组正交基底使 A 对角**:因为 \(A\) 是实对称矩阵,所以总是可以通过某个正交矩阵 \(P\) 将其相似对角,即存在正交矩阵 \(P\) 和对角矩阵 \(\Lambda\) 使得\[ P^{-1}AP=P^{T}AP=\Lambda.\] 3. **应用相应的坐标变**:令新的变量向量 \(\mathbf{y}=P^{T}\mathbf{x}\),则有\[ f(\mathbf{x})=f(P\mathbf{y})=(P\mathbf{y})^TA(P\mathbf{y})=\mathbf{y}^TP^TAP\mathbf{y}=\mathbf{y}^T\Lambda\mathbf{y},\]这样就得到了只包含平方项的标准形。 ```python import numpy as np def orthogonal_transformation(A): eigenvalues, eigenvectors = np.linalg.eigh(A) P = eigenvectors Lambda = np.diag(eigenvalues) return P.T @ A @ P == Lambda # Check if the transformation is correct. ``` #### 应用拉格朗日配方 另一种方式是采用拉格朗日配方处理不含平方项的情况或是为了减少计算复杂度而选用此途径。具体操作如下: - 当二次型中有平方项时,优先考虑这些项并尝试完成完全平方式; - 如果不存在明显的平方项,则先执行一次初步的可逆线性替换以引入平方项,之后继续按照上述原则进行配方直至所有的交叉项都被消除掉。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值