EM算法推导

EM算法是一种用于含有隐变量的概率模型参数估计的迭代方法,包括E步和M步。在高斯混合模型中,EM算法简化了极大似然估计的计算过程。算法通过迭代逐步逼近对数似然函数的最大值,其收敛性有严格证明。
摘要由CSDN通过智能技术生成

EM算法是一种迭代算法,1977年有Dempster等人总结提出,用于含有**隐变量(hidden variable)**的概率模型参数的极大似然估计,或极大后验似然估计。EM算法的每次迭代由两步组成:E步,求期望(Expectation);M步,求极大(Maximization)。所以这一算法被称为期望极大算法(Expectation Maximization algorithm),简称EM算法。

在高斯混合模型中,求极大似然中log中存在加法难以计算,因此加入了隐变量,使用EM算法简化了计算。

在这里插入图片描述

EM算法

输入:观测变量数据X,隐变量数据Z,联合分布 P ( X , Z ∣ θ ) P(X,Z|\theta) P(X,Zθ),条件分布 P ( Z ∣ X , θ ) P(Z|X,\theta) P(ZX,θ)
输出:模型参数 θ \theta θ

  • (1)选择模型的初始值 θ ( 0 ) \theta^{(0)} θ(0)
  • (2)E步:记 θ ( i ) \theta^{(i)} θ(i)为第i次迭代的参数 θ \theta θ的估值,计算第i+1次迭代的E步,计算
    Q ( θ , θ ( i ) ) = E z [ l o g P ( X , Z ∣ θ ) ∣ X , θ ( i ) ] = ∑ Z l o g P ( X , Z
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值