医学上的图像分割问题
医学影像的数据特点:
语义比较简单,结构单一
图像边界模糊、梯度复杂,需要较多的高分辨率信息,高分辨率用于精准分割。
人体内部结构相对固定,分割目标在人体图像中的分布很具有规律,语义简单明确,低分辨率信息能够提供这一信息,用于目标物体的识别。
数据比较少(网络的结构模型过于复杂、和参数过多(过大)的话,就会导致训练的模型过拟合,而造成偏差。)
多模态。(要求有更好的网络对数据的特征进行提取。)
可解释性重要。(需要的不仅仅是一张3D的CT模型图,还需要知道病灶的体积、和具体在哪一层。)
之前很多的方法都是只能处理2D图像,在临床的实践中很多都是包含3D体积。因此提出基于体积、基于FCN的三维图像分割方法。
Une类型的网络适用于医学图像分割、自然图像生成。
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
早期的方法是通过对图像进行分段分类来获得图像或卷中的解剖轮廓。这种分割是通过仅考虑局部环境而获得的,因此很容易失败,特别是在有大量错误分类的像素体中。与Unet不同,在Vnet中使用三维卷积核,并提出基于Dice系数最大化的目标函数来优化模型。
其中总和在N个体素上运行,预测的分割体积pi∈P和真实体积gi∈G。可以区分这种Dice的形式,产生相对于预测的第j个体素计算的梯度。 使用这个公式我们不需要为不同类别的样本分配权重以在前景体素和背景体素之间建立正确的平衡。
改进:
1、首先网络使用的ResNet中的残差网络(Redisual Network)
2、下采样层将MaxPooling全部替换成了卷积核为222,stide为2的conv层
目的是为了减少占用内存(因为进行maxpool的时候,会记住传递到下一层的单元格索引,以便反向传播)
3、使用了PReLu非线性激活函数
4、每层卷积层的都使用555的卷积核,并且使用合适的