医学图像惯用的loss函数

本文深入探讨医学图像分割问题,介绍V-Net和Focal Loss在解决数据不平衡、小目标分割中的应用。V-Net采用三维卷积和Dice系数优化,Focal Loss则针对类别不平衡问题进行优化,提高检测精度。此外,文章还提到了Exponential Logarithmic Loss,用于处理3D图像中小目标的极端不平衡问题。
摘要由CSDN通过智能技术生成

医学上的图像分割问题
医学影像的数据特点:
语义比较简单,结构单一
图像边界模糊、梯度复杂,需要较多的高分辨率信息,高分辨率用于精准分割。
人体内部结构相对固定,分割目标在人体图像中的分布很具有规律,语义简单明确,低分辨率信息能够提供这一信息,用于目标物体的识别。
数据比较少(网络的结构模型过于复杂、和参数过多(过大)的话,就会导致训练的模型过拟合,而造成偏差。)
多模态。(要求有更好的网络对数据的特征进行提取。)
可解释性重要。(需要的不仅仅是一张3D的CT模型图,还需要知道病灶的体积、和具体在哪一层。)

之前很多的方法都是只能处理2D图像,在临床的实践中很多都是包含3D体积。因此提出基于体积、基于FCN的三维图像分割方法。

Une类型的网络适用于医学图像分割、自然图像生成。

V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

早期的方法是通过对图像进行分段分类来获得图像或卷中的解剖轮廓。这种分割是通过仅考虑局部环境而获得的,因此很容易失败,特别是在有大量错误分类的像素体中。与Unet不同,在Vnet中使用三维卷积核,并提出基于Dice系数最大化的目标函数来优化模型。
在这里插入图片描述
其中总和在N个体素上运行,预测的分割体积pi∈P和真实体积gi∈G。可以区分这种Dice的形式,产生相对于预测的第j个体素计算的梯度。 使用这个公式我们不需要为不同类别的样本分配权重以在前景体素和背景体素之间建立正确的平衡。
在这里插入图片描述

改进:
1、首先网络使用的ResNet中的残差网络(Redisual Network)
2、下采样层将MaxPooling全部替换成了卷积核为222,stide为2的conv层
目的是为了减少占用内存(因为进行maxpool的时候,会记住传递到下一层的单元格索引,以便反向传播)
3、使用了PReLu非线性激活函数
4、每层卷积层的都使用555的卷积核,并且使用合适的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值