机械臂奇异点(是什么,危害,为何产生,有哪些,如何避免)

目录

什么是机械臂的奇异点

1. 概念

要点总结

2. 奇异点名字由来与雅可比矩阵

名字起源

机械臂雅可比矩阵

奇异点的危害与原因

1. 危害

2. 原因

背景介绍

为什么会导致控制失效?

为什么会导致无限速度和力矩?

奇异点如何产生

1. 关节四和关节六轴线平行:

2. 关节三处于0度或者180度:

3. 关节六和关节一轴线重合:

奇异点有哪些类型

1. 按机械臂末端位置划分

边界奇异点

内部奇异点

2. 按机械臂自身结构划分

腕部奇异点

肘部奇异点

肩部奇异点

如何避免奇异点

1. 边界奇异点的规避

2. 内部奇异点的规避


什么是机械臂的奇异点

1. 概念

机械臂的奇异点是指在机器人运动学中,当机械臂处于某些特定位置或姿态时,其雅可比矩阵(Jacobian Matrix)变得奇异(即行列式为零),导致雅可比矩阵不可逆。这种情况下,机械臂的某些运动自由度会丢失,无法准确控制末端执行器的速度和方向,导致运动学解算出现问题。

要点总结

机械臂处于某些特定位置或姿态时,机械臂的某些运动自由度会丢失。

奇异点处机械臂的雅可比矩阵变得奇异(即行列式为零),导致雅可比矩阵不可逆。

2. 奇异点名字由来与雅可比矩阵

名字起源

机械臂雅可比矩阵为奇异矩阵时,机械臂处于奇异点。因此奇异点名称就来源于起机械臂的雅可比矩阵。

机械臂雅可比矩阵

什么是机械臂的雅可比矩阵呢(可以详细看我的另一篇描述雅可比的博客,这里只做简介)?

答:机械臂雅可比矩阵是一种描述了机械臂关节角速度到机械臂末端速度的映射;

因此当雅可比矩阵为奇异矩阵时,映射关系就变得“不匹配”(以六轴机械臂为例,六轴机械臂的雅可比矩阵的秩为6,对应的机械臂末端在三维空间的自由度也是6,但当雅可比矩阵为奇异时,假如它的秩变成5,但此时机械臂末端在空间中的自由度依然是6,因此这时的映射关系变成了5对应6,很明显这是不可行的,因为缺失了一个自由度;从空间变换的角度考虑则是空间在变换过程中有一个维度被压缩成了一个平面,比如三维空间被压缩成了二维空间)

奇异点的危害与原因

1. 危害

  • 控制失效:在奇异点处,机械臂的控制系统可能无法准确计算所需的关节速度或力矩,导致控制失效或不稳定。

  • 无限速度和力矩:为了达到预期的末端速度,机械臂可能需要无限大的关节速度或力矩,这是物理上不可实现的。

2. 原因

背景介绍

在机器人运动学中,机械臂的末端的速度与各个关节的速度之间的关系由 雅可比矩阵来描述。雅可比矩阵将关节空间中的速度映射到操作空间中的速度。

在反向运动学控制中,我们通常需要根据期望的末端执行器速度 v来计算所需的关节速度 θ˙。这涉及到对雅可比矩阵J 的求逆

为什么会导致控制失效?

我们需要根据期望的末端执行器速度 v来计算所需的关节角速度 θ,当机械臂处于奇异点时,雅可比矩阵 J(θ)的行列式为零,即矩阵不可逆,导致上述计算无法进行,无法计算出关节的速度与力,因此控制失效。

为什么会导致无限速度和力矩?

由于雅可比矩阵J无法求逆,工程上通过雅可比矩阵的伪逆J+来映射末端速度到关节速度的转换,如下面公式,而伪逆在雅可比矩阵不可逆时元素数值趋于无穷大,因此下面等式右边无穷大,左边关节速度自然也会无穷大。当关节速度无穷大时,需要的力矩自然也是无穷大,这对于机械臂来说十分危险。

 

奇异点如何产生

奇异点产生的原因用一句话简单总结:

当机械臂在某种构型下失去末端控制一个或多个自由度时,就出现了奇异点。

那么,什么构型下机械臂会失去自由度呢。

1. 关节四和关节六轴线平行:

此时腕部的三个旋转轴中两个轴平行,导致失去一个自由度,即旋转关节四和关节六时,机械臂终端的姿态(注意不讨论位置)变化一样。如下动图所示;

2. 关节三处于0度或者180度:

此时机器人已经伸展到了最远边界,无法再往远处移动,因此失去了相应自由度,如下动图所示。

3. 关节六和关节一轴线重合:

此时旋转关节一和关节六,机械臂终端的姿态变化一样,因此失去一个自由度。

如下动图所示。

奇异点有哪些类型

1. 按机械臂末端位置划分

边界奇异点

当机械臂的末端接近边界时出现的奇异点,如上面的1和3。

内部奇异点

当机械臂的末端落在机器人工作空间的边界内时出现的奇异点,如上面的2。

2. 按机械臂自身结构划分

腕部奇异点

发生在机械臂的腕部,如上面的1。

肘部奇异点

发生在机械臂的肘部,如上面的2。

肩部奇异点

发生在机械臂的肩部,如上面的3。

如何避免奇异点

1. 边界奇异点的规避

边界奇异点比较好轨迹,在路径规划时避免轨迹点靠近工作空间边界即可。

2. 内部奇异点的规避

内部奇异点通常是最难避免的,因为它们在机器人工作空间中的位置不是很明显,但可以通过计算轨迹点雅可比矩阵的行列式来提前预判轨迹点,然后规划路径时避开这些点。

### 机械雅可比矩阵的理论与计算方法 #### 雅可比矩阵的基础概念 雅可比矩阵在机器人学中扮演着至关重要的角色,它描述了机械关节空间的速度与其操作空间速度之间的关系。具体来说,雅可比矩阵 \( J \) 将关节角速度矢量 \( \dot{q} \) 映射到末端执行器的空间线速度和角速度矢量 \( v_e \)[^1]。 \[ v_e = J(q)\dot{q} \] 其中: - \( q \): 表示机械当前的关节角度向量; - \( \dot{q} \): 表示机械各关节的角度变化率(即关节速度); - \( v_e \): 是由线速度和角速度组成的末端执行器速度矢量; 这种映射使得可以通过调节关节运动来精确控制末端执行器的位置和方向[^2]。 #### 几何法求解雅可比矩阵 基于几何的方法是一种常见的用于构建雅可比矩阵的技术。对于给定的机械构型,其雅可比矩阵可通过分析各个连杆相对于基座的姿态以及它们如何影响末端执行器位置的变化而得到。这种方法通常涉及对齐次变换矩阵的应用,并利用偏导数定义每一列元素[^1]。 例如,在平面两旋转关节(Planar 2R)机构的情况下,如果设两个连续转轴间的距离分别为\( a_1, a_2 \),则对应的平移部分雅可比项为: \[ J_{trans,i}(q)=\begin{bmatrix}-l_i sin(\sum^{i}_{j=1}{q_j})\\ l_i cos(\sum^{i}_{j=1}{q_j}) \\ 0\end{bmatrix}, i=\overline{1,n}\] 这里展示了如何逐层累加效应以形成完整的表达形式[^3]。 #### MATLAB中的实现案例——六自由度机械 考虑一个具体的例子—具有六个活动关节的标准工业级机械手模型时,我们可以借助MATLAB Robotics System Toolbox 来简化复杂运算过程: ```matlab % 定义DH参数表 dhparams = struct('alpha', [pi/2 pi ...], 'a', [...],'d',[...]); robot = robotics.RigidBodyTree(dhparams); % 设置初始位姿 q = zeros(6,1); je = robot.jacob0(q); % 获取零姿态下全局坐标系内的雅可比矩阵 disp(je); ``` 上述脚本片段演示了创建一个代表特定结构类型的实体对象之后调用内置函数`jacobe()`或者`jacob0()`,分别返回局部框架绑定版或世界原点参照版本的结果[^4]。 #### 特殊情况讨论 —— 奇异性问题 值得注意的是,当某些特殊配置发生时,比如平行四边形闭合链路完全伸展成直线状态,则会出现所谓的“奇异”现象。此时原本满秩的状态会降维甚至退化至不可逆情形,从而导致无法正常完成既定任务目标设定下的轨迹规划等工作流程安排需求约束条件满足困难等问题出现风险增加趋势明显加剧状况恶化可能性增大等诸多不利因素干扰作用增强效果显著降低效率下降质量受损严重后果难以预料等情况的发生概率大大提高。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值