目录
什么是机械臂的奇异点
1. 概念
机械臂的奇异点是指在机器人运动学中,当机械臂处于某些特定位置或姿态时,其雅可比矩阵(Jacobian Matrix)变得奇异(即行列式为零),导致雅可比矩阵不可逆。这种情况下,机械臂的某些运动自由度会丢失,无法准确控制末端执行器的速度和方向,导致运动学解算出现问题。
要点总结
机械臂处于某些特定位置或姿态时,机械臂的某些运动自由度会丢失。
奇异点处机械臂的雅可比矩阵变得奇异(即行列式为零),导致雅可比矩阵不可逆。
2. 奇异点名字由来与雅可比矩阵
名字起源
机械臂雅可比矩阵为奇异矩阵时,机械臂处于奇异点。因此奇异点名称就来源于起机械臂的雅可比矩阵。
机械臂雅可比矩阵
什么是机械臂的雅可比矩阵呢(可以详细看我的另一篇描述雅可比的博客,这里只做简介)?
答:机械臂雅可比矩阵是一种描述了机械臂关节角速度到机械臂末端速度的映射;
因此当雅可比矩阵为奇异矩阵时,映射关系就变得“不匹配”(以六轴机械臂为例,六轴机械臂的雅可比矩阵的秩为6,对应的机械臂末端在三维空间的自由度也是6,但当雅可比矩阵为奇异时,假如它的秩变成5,但此时机械臂末端在空间中的自由度依然是6,因此这时的映射关系变成了5对应6,很明显这是不可行的,因为缺失了一个自由度;从空间变换的角度考虑则是空间在变换过程中有一个维度被压缩成了一个平面,比如三维空间被压缩成了二维空间)
奇异点的危害与原因
1. 危害
-
控制失效:在奇异点处,机械臂的控制系统可能无法准确计算所需的关节速度或力矩,导致控制失效或不稳定。
-
无限速度和力矩:为了达到预期的末端速度,机械臂可能需要无限大的关节速度或力矩,这是物理上不可实现的。
2. 原因
背景介绍
在机器人运动学中,机械臂的末端的速度与各个关节的速度之间的关系由 雅可比矩阵来描述。雅可比矩阵将关节空间中的速度映射到操作空间中的速度。
在反向运动学控制中,我们通常需要根据期望的末端执行器速度 v来计算所需的关节速度 θ˙。这涉及到对雅可比矩阵J 的求逆
为什么会导致控制失效?
我们需要根据期望的末端执行器速度 v来计算所需的关节角速度 θ,当机械臂处于奇异点时,雅可比矩阵 J(θ)的行列式为零,即矩阵不可逆,导致上述计算无法进行,无法计算出关节的速度与力,因此控制失效。
为什么会导致无限速度和力矩?
由于雅可比矩阵J无法求逆,工程上通过雅可比矩阵的伪逆J+来映射末端速度到关节速度的转换,如下面公式,而伪逆在雅可比矩阵不可逆时元素数值趋于无穷大,因此下面等式右边无穷大,左边关节速度自然也会无穷大。当关节速度无穷大时,需要的力矩自然也是无穷大,这对于机械臂来说十分危险。
奇异点如何产生
奇异点产生的原因用一句话简单总结:
当机械臂在某种构型下失去末端控制一个或多个自由度时,就出现了奇异点。
那么,什么构型下机械臂会失去自由度呢。
1. 关节四和关节六轴线平行:
此时腕部的三个旋转轴中两个轴平行,导致失去一个自由度,即旋转关节四和关节六时,机械臂终端的姿态(注意不讨论位置)变化一样。如下动图所示;
2. 关节三处于0度或者180度:
此时机器人已经伸展到了最远边界,无法再往远处移动,因此失去了相应自由度,如下动图所示。
3. 关节六和关节一轴线重合:
此时旋转关节一和关节六,机械臂终端的姿态变化一样,因此失去一个自由度。
如下动图所示。
奇异点有哪些类型
1. 按机械臂末端位置划分
边界奇异点
当机械臂的末端接近边界时出现的奇异点,如上面的1和3。
内部奇异点
当机械臂的末端落在机器人工作空间的边界内时出现的奇异点,如上面的2。
2. 按机械臂自身结构划分
腕部奇异点
发生在机械臂的腕部,如上面的1。
肘部奇异点
发生在机械臂的肘部,如上面的2。
肩部奇异点
发生在机械臂的肩部,如上面的3。
如何避免奇异点
1. 边界奇异点的规避
边界奇异点比较好轨迹,在路径规划时避免轨迹点靠近工作空间边界即可。
2. 内部奇异点的规避
内部奇异点通常是最难避免的,因为它们在机器人工作空间中的位置不是很明显,但可以通过计算轨迹点雅可比矩阵的行列式来提前预判轨迹点,然后规划路径时避开这些点。