问题
想象这样一个问题,假如你有一个机械臂(比如六自由度机械臂,如UR5),你想要用数学的方式来描述这个机械臂,比如机械臂连杆的长度、形状,机械臂的关节间的距离、角度等。
你的目标是使用最少得参数来唯一确定的描述这个机械臂所有的连杆和关节在空间中的位置和姿态,你该如何描述?
什么是DH标定
DH标定是一种很常用的回答上面问题的方案。
定义
DH标定(Denavit-Hartenberg 标定)是一种常用的机械臂运动学建模方法,用来描述机械臂各个关节之间的相对位置和姿态关系。
通过DH标定,能够为机械臂的每个关节定义一个局部坐标系,并使用四个DH参数来描述关节之间的关系。这四个参数可以完全描述每两个相邻关节之间的空间几何关系,进而形成整个机械臂的运动学模型。
参数说明
DH参数有4个(𝑎𝑖, 𝛼𝑖, 𝜃𝑖, 𝑑𝑖),分为两组(分别描述连杆本身和连杆之间关节),如上图所示:
描述连杆本身:其实就是描述空间中两条直线(关节轴线,上图轴i-1 和 轴i)的关系--距离和角度。
𝑎𝑖:连杆长度,是沿X轴(x轴方向见连杆坐标系)的距离,两个关节轴线的距离,描述两个关节之间的水平偏移。
𝛼𝑖:扭转角,是沿X轴的旋转角度,两个关节轴线的角度,描述两个关节的相对扭转。
描述连杆之间关节:(见下图)
𝜃𝑖:关节旋转角,是沿Z轴的旋转角度,描述关节的旋转。
𝑑𝑖:连杆偏移,是沿Z轴的距离,描述两个关节之间的垂直偏移。
连杆坐标系
为了更精确的描述机械臂以及方便后面的运动学运算,对于每个连杆都有一个固定的坐标系,坐标系如下图所示,x轴从当前关节指向下一关节,z轴沿着转轴方向,y轴用右手定则可由xz轴确定。
正向运动学计算的目标是末端连杆与第一个连杆之间的坐标变换关系。
与空间变换的关系
已知这些参数后,如何用数学来描述连杆坐标系间的关系呢?
答:把这些参数转换成变换矩阵即可,因为变换矩阵描述了空间中刚体的变换关系。下面公式显示了如何把这些参数变成变换矩阵。
通过上面公式就可以很方便根据机械臂DH参数求解机械臂正运动学问题啦。
拓展
为什么一组DH参数是4个呢?