[数智人文实战] 02.舆情分析之词云可视化、文本聚类和LDA主题模型文本挖掘

本文介绍了基于疫情舆情数据的文本挖掘实战,包括数据抓取、中文分词、词云可视化、TF-IDF计算、KMeans文本聚类、层次聚类和LDA主题模型分析。利用Jieba进行分词,通过WordCloud生成词云,运用TF-IDF和KMeans发现主题,并借助层次聚类深入分析。最后,通过LDA模型探讨主题分布,助力文本挖掘和数智人文研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【数智人文与文本挖掘】知识星球建立且正式运营,欢迎新老博友和朋友加入,一起分享更多数智人文知识和交流进步。该星球计划每周至少分享7个资源或文章,包括数智人文、文本挖掘、人工智能、大数据分析和图书情报的技术文章、代码及资源。同时,欢迎进入星球的朋友咨询我图情和AI人文技术、论文、求职、考研考博等问题,可以帮助大家修改一份简历(含考研、考博、求职),并给出真诚建议。感谢大家的支持,比较良心的星球,从零到壹尤其适合初学者和换图情、人文专业的同学。

在这里插入图片描述

《数智人文实战》专栏将以实战为主,分享数智人文相关的案例100个,旨在帮助初学者和探索数智人文发展。前文分享了可视化分析软件CiteSpace基础知识。这篇文章将以疫情舆情数据为语料(包含新闻数据采集),深入开展文本挖掘研究,包括中文分词处理及文本聚类、LDA主题模型分析。希望这篇可视化分析文章对您有所帮助,也非常感谢参考文献中老师的分享,一起加油!

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

代码下载地址:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Eastmount

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值