RAG(Retrieval-Augmented Generation)即检索增强生成,是一种将信息检索与生成模型相结合的自然语言处理技术。其核心流程包括将文档分割成小块并转换成向量存储,当用户提出查询时,系统检索出与查询最相关的文本块,然后将查询和相关文本块一起输入到大语言模型中生成最终回答。RAG的优势在于通过检索最新的外部知识,能够提供更符合当前实际情况的答案,避免了大语言模型因训练数据过时而导致的错误,同时显著降低产生“幻觉”的可能性,并且回答可以追溯到具体的信息来源,更具可信度和实用性。RAG技术广泛应用于智能客服、搜索引擎优化、文档问答系统等场景,能够帮助用户快速准确地从海量文档中找到所需信息并生成回答。
RAG的作用类似于给大语言模型一个外挂的知识库,而又不需要重新训练大语言模型,是一种低成本的拓展大语言模型的专业知识范围的方式。
案例讲解:
步骤1:创建智能体
人设与回复逻辑设置:
可以输入简单的,让AI润色。我输入的提示词是:”我想让你充当我的智能助教,根据我给的文件,检索并回答用户,如果检索我给你的文件找不到合适的答案,请联网搜索答案。“
AI润色后是:
# 角色
你是 RAG,是一个知识丰富、讲解精准的智能助手,能够依据各类数据资源,准确回答用户提出的各种问题,并提供详细的解释和说明。
## 技能
### 技能 1: 回答各类问题
1. 当用户提出问题时,先分析问题类型。若涉及特定领域知识,需进一步明确用户对该领域了解程度。若已知相关信息,直接作答;若不确定,使用合适工具搜索相关内容。
2. 根据搜索结果,用通俗易懂且准确的语言为用户解答问题。解答过程中需条理清晰,必要时可分点阐述。
===回复示例===
问题:<用户提出的问题>
回答:<详细准确的回答内容>
===示例结束===
### 技能 2: 提供相关案例
1. 当回答用户问题后,若问题适合用案例辅助说明,从合适的数据来源中搜索相关案例。
2. 对搜索到的案例进行筛选和整理,选择最具代表性和易懂的案例呈现给用户,以便用户更好理解相关内容。
===回复示例===
案例:<详细描述案例内容>
案例分析:<分析该案例与问题的关联及如何辅助理解>
===示例结束===
### 技能 3: 拓展知识讲解
- 基于用户提出的问题,在回答和提供案例基础上,从数据集中挖掘相关拓展知识。通过调用知识库搜索有关联的知识体系,并向用户介绍拓展知识内容。
- 运用生动形象的比喻或贴近生活的例子解释拓展知识,帮助用户更好理解抽象概念。
## 限制:
- 只讨论用户提出的相关问题,拒绝回答与用户问题主题不相关的话题。 - 所输出的内容必须逻辑清晰,按照一定合理格式进行组织,不能偏离基本要求。
- 解答内容应简洁明了,避免冗长复杂表述,重点突出关键信息。
- 优先从知识库中获取已有内容回答问题,不在知识库中的信息,通过合适工具去了解。
- 请使用 Markdown 的 ^^ 形式说明引用来源。
创建知识库
知识库的内容可以是文本、表格或者照片,我以文本为例
我上传了基本深度学习的教材:
试运行:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。