摆脱云端限制!Qwen3+MCP+Ollama 本地工具调用实战教程

img

通义千问3(Qwen3)是阿里巴巴通义千问团队发布的最新开源大语言模型,它具备强大的性能、高度的模块化特性以及出色的工具使用能力。

本文教你如何通过Ollama在本地运行通义千问3,并启用模型上下文协议(MCP),以使用代码解释器、数据获取、时间查询等工具。

通过学习,你会构建一个完全在本地机器上运行、由通义千问3驱动的智能助手,且无需云API密钥!开始吧!

1、 为什么选择通义千问3 + Ollama + MCP

为了实现这些先进功能,阿里巴巴推出了模型上下文协议(MCP)。MCP允许模型通过调度命令行服务与外部工具进行交互,这让大语言模型能够以结构化且安全的方式获取时间、从网站抓取数据,或调用其他本地工具。

在通义千问智能体(Qwen-Agent)生态系统中,诸如mcp-server-timemcp-server-fetch之类的MCP工具,充当着端点的角色,模型可在需要时自行触发这些端点。这些工具通过一个字典进行配置,该字典会告知智能体每个功能应运行的命令。

  • 通义千问3:专为开源部署优化的前沿大语言模型。
  • Ollama:通过一条命令就能简化本地大语言模型(如通义千问3)的部署。
  • MCP:允许外部工具通过结构化消息进行通信(例如网页浏览或时间查询)。
  • 工具使用:拓展通义千问3的能力,使其超越静态文本处理——支持执行代码、调用API等更多功能!

2、 在本地设置Ollama和通义千问3

步骤1:安装Ollama并运行通义千问3

在本地终端(Linux/macOS系统)运行以下命令:

# 安装Ollama
curl -fsSL https://ollama.com/install.sh | sh
# 启动Ollama服务器
ollama serve

然后拉取通义千问3模型:

ollama pull qwen3

这会获取通义千问3的模型权重,并通过http://localhost:11434/v1这个Ollama API端点,为在本地使用做好准备。

步骤2:克隆并安装通义千问智能体(Qwen-Agent)

接下来,克隆通义千问智能体的官方代码库,并安装支持图形用户界面(GUI)、检索增强生成(RAG)、代码解释以及MCP所需的额外组件。运行以下命令:

# 克隆代码库
git clone https://github.com/QwenLM/Qwen-Agent.git
# 安装所有额外组件
pip install -e ./Qwen-Agent"[gui, rag, code_interpreter, mcp]"

-e标记确保以可编辑模式安装该软件包,方便在需要时深入研究其内部机制。安装完成后,你可以编写一个Python脚本来连接智能助手和Ollama,并启用工具使用功能。

步骤3:编写Python脚本

以下是通过MCP + Ollama运行一个支持工具使用的智能助手的完整代码:

from qwen_agent.agents import Assistant

# 步骤1:配置本地通义千问3模型(由Ollama提供服务)
llm_cfg = {
   'model': 'qwen3',
   'model_server': 'http://localhost:11434/v1',  # Ollama API
    'api_key': 'EMPTY',
}

# 步骤2:定义工具(MCP + 代码解释器)
tools = [
    {'mcpServers': {
            'time': {
                'command': 'uvx',
                'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
            },
            'fetch': {
                'command': 'uvx',
                'args': ['mcp-server-fetch']
            }
        }
    },
    'code_interpreter',
]

# 步骤3:初始化通义千问智能体助手
bot = Assistant(llm=llm_cfg, function_list=tools)

# 步骤4:发送包含URL的用户消息
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]

# 步骤5:运行智能助手并打印结果
for responses in bot.run(messages=messages):
    pass
print(responses)

这个脚本使用Ollama后端初始化通义千问3模型,并注册了两个MCP工具(timefetch)以及内置的code_interpreter。在根据需求评估工具或代码后,智能助手会处理用户消息并返回响应。

3 总结

通义千问 3 搭配通义千问智能体(Qwen - Agent)、模型上下文协议(MCP)和 Ollama,可构建强大的本地人工智能助手,摆脱对外部云服务的依赖。该组合支持多轮对话、实时信息检索与 Python 代码执行,所有操作均可在本地环境完成。

对于重视隐私、追求灵活性与扩展性,且致力于构建智能体的开发者、研究人员和产品团队而言,这无疑是理想之选。随着通义千问 3 持续迭代,未来它将更有力地支持复杂任务,实现与自定义工具的无缝融合,为本地自主人工智能智能体的发展开拓广阔前景。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值