目录
还没写完,但是先标个大致的流程,跟着这个走
使用Yolov5训练数据集
1、标注硬币数据样本集
在总文件夹下创建一个文件夹,用于存放数据,我这里命名为CoinData
在CoinData内创建images,labels两个文件夹,分别用于存放样本图片,及标签信息
框外的暂时不用管,这边只新建蓝色框的即可
这里使用labelimg进行数据标注
1.1.如何下载labelimg
https://github.com/tzutalin/labelImg
github需科学上网
具体安装可参考标注工具 labelImg 的下载安装及使用_labelimg下载_悄悄地努力的博客-CSDN博客
1.2进行数据标注
我进入labelimg总是闪退,最后发现我从虚拟环境进不容易闪退
即cmd--activate Yolo--labelimg--即可顺利打开。
关于如何创建虚拟环境
python创建虚拟环境(一):使用conda创建虚拟环境_conda创建python虚拟环境_caroline_richboom的博客-CSDN博客
随后在labelimg中进行数据标注
可以以yolo也可以以voc保存,若以yolo保存,将会获得txt文件,以voc进行保存,将会获得xml文件,建议在数据标注时使用voc模式,在下面的步骤中两种文件都将用到,也将提供代码用于两种文件格式的转换。
2.划分数据集
2.1划分训练集,验证集,测试集
在CoinData(你的数据文件夹)下,创建程序split_train_val.py
不需要更改
'''
Descripttion: split_img.py
version: 1.0
Author: UniDome
Date: 2022-04-20 16:28:45
LastEditors: UniDome
LastEditTime: 2022-04-20 16:39:56
'''
import os, shutil, random
from tqdm import tqdm
def split_img(img_path, label_path, split_list):
try: # 创建数据集文件夹
Data = '../DataSet'
os.mkdir(Data)
train_img_dir = Data + '/images/train'
val_img_dir = Data + '/images/val'
test_img_dir = Data + '/images/test'
train_label_dir = Data + '/labels/train'
val_label_dir = Data + '/labels/val'
test_label_dir = Data + '/labels/test'
# 创建文件夹
os.makedirs(train_img_dir)
os.makedirs(train_label_dir)
os.makedirs(val_img_dir)
os.makedirs(val_label_dir)
os.makedirs(test_img_dir)
os.makedirs(test_label_dir)
except:
print('文件目录已存在')
train, val, test = split_list
all_img = os.listdir(img_path)
all_img_path = [os.path.join(img_path, img) for img in all_img]
# all_label = os.listdir(label_path)
# all_label_path = [os.path.join(label_path, label) for label in all_label]
train_img = random.sample(all_img_path, int(train * len(all_img_path)))
train_img_copy = [os.path.join(train_img_dir, img.split('\\')[-1]) for img in train_img]
train_label = [toLabelPath(img, label_path) for img in train_img]
train_label_copy = [os.path.join(train_label_dir, label.split('\\')[-1]) for label in train_label]
for i in tqdm(range(len(train_img)), desc='train ', ncols=80, unit='img'):
_copy(train_img[i], train_img_dir)
_copy(train_label[i], train_label_dir)
all_img_path.remove(train_img[i])
val_img = random.sample(all_img_path, int(val / (val + test) * len(all_img_path)))
val_label = [toLabelPath(img, label_path) for img in val_img]
for i in tqdm(range(len(val_img)), desc='val ', ncols=80, unit='img'):
_copy(val_img[i], val_img_dir)
_copy(val_label[i], val_label_dir)
all_img_path.remove(val_img[i])
test_img = all_img_path
test_label = [toLabelPath(img, label_path) for img in test_img]
for i in tqdm(range(len(test_img)), desc='test ', ncols=80, unit='img'):
_copy(test_img[i], test_img_dir)
_copy(test_label[i], test_label_dir)
def _copy(from_path, to_path):
shutil.copy(from_path, to_path)
def toLabelPath(img_path, label_path):
img = img_path.split('\\')[-1]
label = img.split('.jpg')[0] + '.txt'
return os.path.join(label_path, label)
def main():
img_path = r'D:\A_coin\yolov5-master\CoinData\images'
label_path = r'D:\A_coin\yolov5-master\CoinData\labels'
split_list = [0.7, 0.2, 0.1] # 数据集划分比例[train:val:test]
split_img(img_path, label_path, split_list)
if __name__ == '__main__':
main()
随后将生成如下文件夹
3.修改模型配置文件
这里选用yolo5s.yaml
右击并用记事本打开,将nc的值修改为自己的标注类别数
4.开始模型训练
打开命令提示符,进入虚拟环境,即cmd--activate Yolov5test(这里是你自己的虚拟环境名)
输入
python train.py --weights weights/yolov5s.pt --cfg models/yolov5s.yaml --data data/myvoc.yaml --epoch 200 --batch-size 8 --img 640 --device cpu
5.查看训练模型
6.用新图片进行测试
同样在命令提示符内,进入虚拟环境
根据所需输入
exp是你模型存放的文件夹,根据自己情况选择,
python detect.py --weights runs/train/exp14/weights/best.pt --source D:/A_coin/coin_move.mp4
--source 0 # webcam 自带摄像头
file.jpg # image 图片
file.mp4 # video 视频
path/ # directory
path/*.jpg # glob
'https://youtu.be/NUsoVlDFqZg' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
3.如何查看训练结果
先放个链接在这
二、使用Deepsort实现目标追踪
1.数据集处理
deepsort是实现目标追踪的,如果你的目标是官方的80类别之一,可以直接调用官方训练权重,若不是,则需要自己找一段视频,按帧处理为图片,再对每张图片进行数据标注,如yolov5数据集一样的操作。deepsort训练所用数据格式需为xml格式,即在lablimg中标注时,需要选择voc格式。
视频处理为帧的代码
import cv2
video_path = "D:/CoinNew.mp4" # 视频文件路径
output_path = "D:/CoinVedioData/images/" # 输出帧保存的文件夹路径
# 打开视频文件
video = cv2.VideoCapture(video_path)
# 初始化帧计数器
frame_count = 0
while True:
# 读取视频的每一帧
ret, frame = video.read()
if not ret:
break
# 保存当前帧为图像文件
cv2.imwrite(output_path + f"frame_{frame_count}.jpg", frame)
# 增加帧计数器
frame_count += 1
# 关闭视频文件
video.release()
使用代码把图像中的检测目标扣出来,作为我们的数据集。
import cv2
import xml.etree.ElementTree as ET
import numpy as np
import xml.dom.minidom
import os
import argparse
def main():
# JPG文件的地址
img_path = 'D:/A_coin/yolov5-master/CoinData/images/'
# XML文件的地址
anno_path = 'D:/A_coin/yolov5-master/CoinData/xml/'
# 存结果的文件夹
cut_path = 'D:/A_coin/yolov5-master/CoinData/crops/'
if not os.path.exists(cut_path):
os.makedirs(cut_path)
# 获取文件夹中的文件
imagelist = os.listdir(img_path)
# print(imagelist
for image in imagelist:
image_pre, ext = os.path.splitext(image)
img_file = img_path + image
img = cv2.imread(img_file)
xml_file = anno_path + image_pre + '.xml'
# DOMTree = xml.dom.minidom.parse(xml_file)
# collection = DOMTree.documentElement
# objects = collection.getElementsByTagName("object")
tree = ET.parse(xml_file)
root = tree.getroot()
# if root.find('object') == None:
# return
obj_i = 0
for obj in root.iter('object'):
obj_i += 1
print(obj_i)
cls = obj.find('name').text
xmlbox = obj.find('bndbox')
b = [int(float(xmlbox.find('xmin').text)), int(float(xmlbox.find('ymin').text)),
int(float(xmlbox.find('xmax').text)),
int(float(xmlbox.find('ymax').text))]
img_cut = img[b[1]:b[3], b[0]:b[2], :]
path = os.path.join(cut_path, cls)
# 目录是否存在,不存在则创建
mkdirlambda = lambda x: os.makedirs(x) if not os.path.exists(x) else True
mkdirlambda(path)
try:
cv2.imwrite(os.path.join(cut_path, cls, '{}_{:0>2d}.jpg'.format(image_pre, obj_i)), img_cut)
except:
continue
print("&&&&")
if __name__ == '__main__':
main()
把这些数据分为训练集和验证集
这里要注意,假设你有100张照片,70个检测目标,每个目标用上述代码抠出来的图片为n张,那么划分完后,你的test和train文件夹下应各有70个子文件夹,train中每个子文件夹内应该是同一目标的n-1张图片,test同名子文件夹内应该是一张检测目标的图片,以下代码用GPT生成,顺便贴上我当时提的需求。
import os
import shutil
'''
帮我写一个python脚本,实现功能为:
第一步,通过指定路径读取文件夹A,读取该文件夹内子文件夹数目,记该数目为num。
第二步,在指定路径下,创建一个新文件夹命名为New,该处New名可修改,New下创建两个子文件夹分别命名为train和test,train和test下分别创建num个子文件夹,子文件夹命名从0001开始递增。
第三步,遍历文件夹A内子文件夹,当前遍历轮次设为i,记i初始值为0,每一次遍历实现,读取A文件夹下第i个子文件夹,记该路径为Word_crops,读取该路径下.jpg文件个数,记数目为N。
打开New文件夹内train文件夹下第i个子文件夹,记该路径为Word_train。
打开New文件夹内test文件夹下第i个子文件夹,记该路径为Word_test。
打开Word_crops路径,读取该路径下.jpg格式文件,将该路径下的前N-1个.jpg文件复制粘贴到Word_train路径,然后将该路径下的第N个.jpg文件复制粘贴到Word_test路径。
随后开始下一轮循环,即i++,当i=num-1时停止循环,程序结束
'''
def copy_images(source_folder, destination_folder_train, destination_folder_test):
jpg_files = [f for f in os.listdir(source_folder) if f.endswith(".jpg")]
total_files = len(jpg_files)
for i, file_name in enumerate(jpg_files):
source_path = os.path.join(source_folder, file_name)
if i < total_files - 1:
destination_path = os.path.join(destination_folder_train, file_name)
else:
destination_path = os.path.join(destination_folder_test, file_name)
shutil.copyfile(source_path, destination_path)
def create_folders_with_images(source_folder, destination_folder):
subfolders = next(os.walk(source_folder))[1]
num = len(subfolders)
new_folder = os.path.join(destination_folder, "New")
os.makedirs(new_folder, exist_ok=True)
train_folder = os.path.join(new_folder, "train")
test_folder = os.path.join(new_folder, "test")
os.makedirs(train_folder, exist_ok=True)
os.makedirs(test_folder, exist_ok=True)
for i in range(num):
subfolder_name = str(i + 1).zfill(4)
train_subfolder = os.path.join(train_folder, subfolder_name)
test_subfolder = os.path.join(test_folder, subfolder_name)
os.makedirs(train_subfolder, exist_ok=True)
os.makedirs(test_subfolder, exist_ok=True)
source_subfolder = os.path.join(source_folder, subfolders[i])
copy_images(source_subfolder, train_subfolder, test_subfolder)
print("程序执行完毕!")
# 替换为您的文件夹路径
source_folder = "C:/Users/a/Desktop/TRY/crops"
destination_folder = "C:/Users/a/Desktop/TRY"
create_folders_with_images(source_folder, destination_folder)
3.修改相关参数
将该处修改为自己的类别数,即你的train和test文件夹下子文件夹个数
4.训练模型
cmd--activate Yolov5test
运行程序
python train.py --data-dir data/
或者直接在编译器运行,最后可以看到结果保存到了exp16
5.测试模型
三、qt界面,实现可视化
qt届时搞个视频吧