全面掌握大模型:LLaMA-Factory深度解析,看一篇文章就够了!

LLaMA-Factory

如何高效地微调和部署大型语言模型(LLM)? LLaMA-Factory作为一个开源的微调框架,应运而生,为开发者提供了一个简便、高效的工具,以便在现有的预训练模型基础上,快速适应特定任务需求,提升模型表现。LLaMA-Factory作为一个功能强大且高效的 大模型微调框架,通过其用户友好的界面和丰富的功能特性,为开发者提供了极大的便利。

LLaMA-Factory

一、LLaMA-Factory

什么是LLaMA-Factory?LLaMA-Factory,全称Large Language Model Factory,即大型语言模型工厂。它支持多种预训练模型和微调算法,提供了一套完整的工具和接口,使得用户能够轻松地对预训练的模型进行定制化的训练和调整**,以适应特定的应用场景,如智能客服、语音识别、机器翻译等。**

LLaMA-Factory

  1. 支持的模型:LLaMA-Factory支持多种大型语言模型,包括但不限于LLaMA、BLOOM、Mistral、Baichuan、Qwen、ChatGLM等。

  2. 集成方法:包括(增量)预训练、指令监督微调、奖励模型训练、PPO训练、DPO训练和ORPO训练等多种方法。

  3. 运算精度与优化算法:提供32比特全参数微调、16比特冻结微调、16比特LoRA微调和基于AQLM/AWQ/GPTQ/LLM.int8的2/4/8比特QLoRA微调等多种精度选择,以及GaLore、DoRA、LongLoRA、LLaMA Pro、LoRA+、LoftQ和Agent微调等先进算法。

LLaMA-Factory

LLaMA-Factory提供了简洁明了的操作界面和丰富的文档支持,使得用户能够轻松上手并快速实现模型的微调与优化。 用户可以根据自己的需求选择不同的模型、算法和精度进行微调,以获得最佳的训练效果。

LLaMA-Factory

二、模型微调(Fine-Tuning)

如何使用LLaMA-Factory进行模型微调?使用LLaMA-Factory进行模型微调是一个涵盖从选择模型、数据加载、参数配置到训练、评估优化直至部署应用****的全面且高效的流程。

1. 选择模型:根据应用场景和需求选择合适的预训练模型。

  • 设置语言: 进入WebUI后,可以切换到中文(zh)。

  • 配置模型: 选择LLaMA3-8B-Chat模型。

  • 配置微调方法:微调方法则保持默认值lora,使用LoRA轻量化微调方法能极大程度地节约显存。

2. 加载数据:将准备好的数据集加载到LLaMA-Factory中。

  • LLaMA-Factory项目内置了丰富的数据集,放在了data目录下。同时也可以自己准备自定义数据集,将数据处理为框架特定的格式,放到指定的data目录下。

3. 配置参数:根据实际情况调整学习率、批次大小等训练参数。

  • 学习率+梯度累积: 设置学习率为1e-4,梯度累积为2,有利于模型拟合。

  • 计算类型: 如果是NVIDIA V100显卡,计算类型保持为fp16;如果使用了AMD A10系列显卡,可以更改计算类型为bf16。

  • LoRA参数设置: 设置LoRA+学习率比例为16,LoRA+被证明是比LoRA学习效果更好的算法。在LoRA作用模块中填写all,即将LoRA层挂载到模型的所有线性层上,提高拟合效果。

4. 开始训练:启动训练过程,并监控模型的训练进度和性能表现。

  1. 输出目录:将输出目录修改为train_llama3,训练后的LoRA权重将会保存在此目录中。

  2. 预览命令: 点击「预览命令」可展示所有已配置的参数,如果想通过代码运行微调,可以复制这段命令,在命令行运行。

  3. 开始: 点击「开始」启动模型微调。

  • 训练完毕: 启动微调后需要等待一段时间,待模型下载完毕后可在界面观察到训练进度和损失曲线。模型微调大约需要20分钟,显示“训练完毕”代表微调成功。

5. 评估与优化:使用LLaMA-Factory提供的评估工具对模型性能进行评估,并根据评估结果进行针对性的优化。

  • 刷新适配器: 微调完成后,点击页面顶部的「刷新适配器」

  • 适配器路径: 点击适配器路径,即可弹出刚刚训练完成的LoRA权重,点击选择下拉列表中的train_llama3选项,在模型启动时即可加载微调结果。

  • 评估模型: 选择「Evaluate&Predict」栏,在数据集下拉列表中选择「eval」(验证集)评估模型。

  • 输出目录: 更改输出目录为eval_llama3,模型评估结果将会保存在该目录中。

  • 开始评估: 最后点击开始按钮启动模型评估。

  • 评估分数: 模型评估大约需要5分钟左右,评估完成后会在界面上显示验证集的分数。

  • ROUGE分数: 其中ROUGE分数衡量了模型输出答案(predict)和验证集中标准答案(label)的相似度,ROUGE分数越高代表模型学习得更好。

6. 部署应用:将训练好的模型部署到实际应用场景中,实现其功能和价值。

  • 加载模型: 选择「Chat」栏,确保适配器路径是train_llama3,点击「加载模型」即可在Web UI中和微调模型进行对话。

  • 卸载模型: 点击「卸载模型」,点击“×”号取消适配器路径,再次点击「加载模型」,即可与微调前的原始模型聊天。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

### LLaMA-Factory 项目概述 LLaMA-Factory 是一个致力于简化大型语言模型微调过程的开源项目。该项目提供了一系列工具和脚本,使得研究人员和开发者能更便捷地调整预训练的语言模型以适应特定的任务需求[^2]。 ### 源码结构解析 #### 主要模块说明 1. **PeftModelForCausalLM** 此模块继承自 `PeftModel` 类,专门用于处理因果语言建模任务中的参数高效微调 (PEFT)[^1]。通过这种方式,可以有效地减少所需资源量并提高效率。 ```python class PeftModelForCausalLM(PeftModel): pass # 实现细节省略 ``` 2. **PeftModel** 作为基类之一,实现了通用的功能接口,并集成了推送到 Hugging Face Hub 的功能以及 PyTorch 的神经网络组件特性。 ```python from huggingface_hub import PushToHubMixin import torch.nn as nn class PeftModel(PushToHubMixin, nn.Module): pass # 实现细节省略 ``` 3. **LoraModel** 该类基于基础调节器设计而成,在低秩适配方面表现出色,允许仅更新少量新增加的权重矩阵来实现性能提升而不影响原有架构稳定性。 ```python class LoraModel(BaseTuner): pass # 实现细节省略 ``` ### 使用教程概览 对于希望利用 LLaMA-Factory 进行研究或开发工作的用户来说,官方提供了详细的文档指导如何安装环境、准备数据集直至完成整个训练流程。具体而言: - 安装依赖项并通过 Git 克隆仓库获取最新版本; - 修改配置文件指定目标模型及其他必要参数设置; - 执行 Python 或 Bash 脚本来启动实验运行; 例如,在 `train_bash.py` 文件中定义了命令行界面(CLI),让用户可以通过简单的指令快速开始训练会话。 ```bash python src/train_bash.py --model_name_or_path "path/to/model" ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值