[大模型]DeepSeek-MoE-16b-chat Transformers 部署调用

DeepSeek-MoE-16b-chat Transformers 部署调用

DeepSeek-MoE-16b-chat 介绍

DeepSeek MoE目前推出的版本参数量为160亿,实际激活参数量大约是28亿。与自家的7B密集模型相比,二者在19个数据集上的表现各有胜负,但整体比较接近。而与同为密集模型的Llama 2-7B相比,DeepSeek MoE在数学、代码等方面还体现出来明显的优势。但两种密集模型的计算量都超过了180TFLOPs每4k token,DeepSeek MoE却只有74.4TFLOPs,只有两者的40%。

环境准备

在autodl平台中租一个**双卡3090等24G(共计48G)**显存的显卡机器,如下图所示镜像选择PyTorch–>2.1.0–>3.10(ubuntu22.04)–>12.1
接下来打开刚刚租用服务器的JupyterLab, 图像 并且打开其中的终端开始环境配置、模型下载和运行演示。
在这里插入图片描述

接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo

pip换源和安装依赖包

# 因为涉及到访问github因此最好打开autodl的学术镜像加速
source /etc/network_turbo
# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install modelscope transformers sentencepiece accelerate
pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.4.2/flash_attn-2.4.2+cu122torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

模型下载

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

/root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py执行下载,模型大小为 30 GB,下载模型大概需要 10~20 分钟

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('deepseek-ai/deepseek-moe-16b-chat', cache_dir='/root/autodl-tmp', revision='master')

代码准备

在/root/autodl-tmp路径下新建trains.py文件并在其中输入以下内容

import torch  # 导入torch库,用于深度学习相关操作
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig  # 从transformers库导入所需的类

# 将模型路径设置为刚刚下载的模型路径
model_name = "/root/autodl-tmp/deepseek-ai/deepseek-moe-16b-chat"

# 加载分词器,trust_remote_code=True允许加载远程代码
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)

# 加载语言模型,设置数据类型为bfloat16以优化性能(以免爆显存),并自动选择GPU进行推理
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)

# 加载并设置生成配置,使用与模型相同的设置
model.generation_config = GenerationConfig.from_pretrained(model_name, trust_remote_code=True)

# 将填充令牌ID设置为与结束令牌ID相同,用于生成文本的结束标记
model.generation_config.pad_token_id = model.generation_config.eos_token_id

# 定义输入消息,模型使用apply_chat_template进行消息输入,模拟用户与模型的交互
messages = [
    {"role": "user", "content": "你是谁"}
]

# 处理输入消息,并添加生成提示
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")

# 使用模型生成回应,设置max_new_tokens数量为100(防止爆显存)也可以将max_new_tokens设置的更大,但可能爆显存
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

# 模型输出,跳过特殊令牌以获取纯文本结果
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)

# 显示生成的回答
print(result)

部署

在终端输入以下命令运行trains.py,即实现DeepSeek-MoE-16b-chat的Transformers部署调用

cd /root/autodl-tmp
python trains.py

观察命令行中loading checkpoint表示模型正在加载,等待模型加载完成产生对话,如下图所示
在这里插入图片描述

<think>嗯,用户问的是在Ubuntu上部署本地DeepSeek模型。首先,我需要确认DeepSeek有没有提供官方的本地部署方式。DeepSeek可能是一个大语言模型,比如类似LLaMA或者他们自己开发的模型。用户可能想在自己的Ubuntu机器上运行它,而不是通过API调用。 接下来,我应该考虑硬件要求。大模型通常需要较高的显存,尤其是如果用户想用GPU加速的话。比如,7B参数的模型可能需要至少8GB的显存,而更大的模型可能需要更多。如果用户没有GPU,可能只能运行较小的模型或者使用CPU推理,但速度会慢很多。 然后,部署步骤大概包括几个方面:安装依赖、下载模型文件、配置环境、运行推理代码。常见的工具链有Hugging Face的Transformers库,或者使用vLLM等优化推理的框架。需要确认DeepSeek的模型是否已经上传到Hugging Face Hub,或者是否有官方的GitHub仓库提供代码和指导。 另外,用户可能需要了解如何获取模型权重。有些模型需要申请访问权限,比如Meta的LLaMA,所以可能需要用户先去申请,然后下载。如果是开源的,可能直接下载。如果DeepSeek是闭源的,那可能无法本地部署,这时候需要告知用户。 还有,环境配置方面,需要安装Python、PyTorch、CUDA等依赖。不同的模型版本可能需要特定的库版本,需要注意兼容性。如果用户不熟悉这些,可能需要一步步指导,比如用pip安装哪些包,如何设置虚拟环境等。 另外,可能的常见问题包括显存不足、依赖冲突、模型文件损坏等。需要提醒用户检查硬件是否符合要求,确保依赖正确安装,以及下载的模型是否完整。 最后,如果DeepSeek有特定的部署方式,比如提供Docker镜像或者脚本,应该优先按照官方文档来操作。如果没有,可能需要参考类似模型的部署方法,比如使用Hugging Face的pipeline来加载模型。 总结一下,回答的结构应该是先确认模型是否可本地部署,然后说明硬件需求,接着分步骤介绍如何安装依赖、下载模型、运行示例代码,最后给出常见问题处理建议。需要确保用户即使不熟悉相关工具,也能按照步骤操作,同时提醒可能遇到的坑。</think>以下是在Ubuntu系统部署本地DeepSeek大语言模型的通用操作指南(以HuggingFace开源模型为例): --- **一、硬件要求** 1. 显存要求(GPU加速): - DeepSeek-MoE-16b-chat:至少24GB显存(推荐A10/A100显卡) - DeepSeek-7b系列:至少10GB显存(如RTX 3080/4090) 2. 纯CPU模式:需32GB+内存,推理速度显著降低 **二、部署步骤** ```bash # 1. 安装基础依赖 sudo apt update && sudo apt install -y python3 python3-pip git # 2. 创建虚拟环境 python3 -m venv deepseek-env source deepseek-env/bin/activate # 3. 安装PyTorch(根据CUDA版本选择) pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 # 4. 安装模型运行库 pip install transformers accelerate sentencepiece # 5. 下载模型(以DeepSeek-7b-chat为例) git clone https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat ``` **三、运行推理(Python示例)** ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_path = "./deepseek-llm-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") input_text = "解释量子力学的基本原理" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=100) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` **四、优化方案(可选)** 1. 使用vLLM加速: ```bash pip install vllm from vllm import LLM, SamplingParams llm = LLM(model="./deepseek-llm-7b-chat") print(llm.generate("上海有什么好玩的地方?")) ``` 2. 量化部署(减少显存占用): ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", load_in_4bit=True # 4bit量化 ) ``` **五、常见问题处理** 1. 显存不足:尝试`load_in_8bit=True`或使用`device_map="cpu"`切到CPU模式 2. 下载中断:设置HF镜像源 `export HF_ENDPOINT=https://hf-mirror.com` 3. 依赖冲突:推荐使用Docker环境 ```bash docker run --gpus all -it pytorch/pytorch:2.2.2-cuda12.1-cudnn8-runtime ``` --- **注意事项:** 1. 模型文件约需13-30GB磁盘空间 2. 首次运行会自动下载分词器配置 3. 对话格式需遵循官方模板(详见HuggingFace模型卡) 建议通过`nvidia-smi`监控显存使用情况,复杂任务推荐使用A100/A800等专业级显卡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FL1623863129

你的打赏是我写文章最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值