Skip-Gram模型和负采样

本文介绍了Skip-Gram模型,它基于中心词预测上下文单词,通过6步训练过程实现。同时讨论了负采样技术,用于优化损失函数,通过采样低频词提高效率。负采样的目标函数旨在最大化真实样本的概率,最小化错误样本的概率,使用sigmoid函数进行建模。
摘要由CSDN通过智能技术生成

 Skip-Gram模型

根据中心词,预测或生成它的上下文单词。

比如,根据jumped,预测或生成{“the”,“cat”,“over”,“the”,“puddle”}。

显然,交换CBOW模型的x和y,Skip-Gram模型的输入是中心词的one-hot向量x,定义输出为  。词向量矩阵V和U和CBOW模型相同。它的模型训练同样有以下6步:

1,生成以one-hot向量表示,中心词c的词向量x;

2,初始化矩阵V,生成模型的输入词向量  ;

3,因为输入只有1个中心词,无需均值化,即 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值