Skip-Gram模型
根据中心词,预测或生成它的上下文单词。
比如,根据jumped,预测或生成{“the”,“cat”,“over”,“the”,“puddle”}。
显然,交换CBOW模型的x和y,Skip-Gram模型的输入是中心词的one-hot向量x,定义输出为 。词向量矩阵V和U和CBOW模型相同。它的模型训练同样有以下6步:
1,生成以one-hot向量表示,中心词c的词向量x;
2,初始化矩阵V,生成模型的输入词向量 ;
3,因为输入只有1个中心词,无需均值化,即
Skip-Gram模型
根据中心词,预测或生成它的上下文单词。
比如,根据jumped,预测或生成{“the”,“cat”,“over”,“the”,“puddle”}。
显然,交换CBOW模型的x和y,Skip-Gram模型的输入是中心词的one-hot向量x,定义输出为 。词向量矩阵V和U和CBOW模型相同。它的模型训练同样有以下6步:
1,生成以one-hot向量表示,中心词c的词向量x;
2,初始化矩阵V,生成模型的输入词向量 ;
3,因为输入只有1个中心词,无需均值化,即