Pytorch深度学习实战3-3:张量Tensor的分块、变形、排序、极值与in-place操作

本文深入探讨Pytorch中张量的分块、组合、变形、排序、极值和in-place操作。详细介绍了如何进行张量的维度变换、维度交换、序列化与反序列化,以及如何进行张量的排序、取极值。同时,文章讨论了in-place操作和内存共享的概念,并给出使用示例,强调了在特定情况下避免使用in-place操作的重要性。
摘要由CSDN通过智能技术生成
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Winter`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值