矩阵分析笔记

零子空间和零空间有什么区别

零子空间

  • 定义:零子空间是仅包含零向量 0 的子空间,即: {0}
  • 性质
    • 唯一性:在任何向量空间 V 中,零子空间都是唯一的。
    • 维数:零子空间的维数为 0。
    • 最小性:它是向量空间中最小的子空间。
  • 别称:零子空间也常被称为平凡子空间(trivial subspace)

零空间(核)

  • 定义:对于一个线性变换 T:V→W 或一个矩阵 A,零空间是所有被映射到零向量的向量的集合,即: Null(A)={x∈V∣Ax=0}
  • 性质
    • 子空间:零空间是 V 的一个子空间。
    • 维数:零空间的维数称为零度(nullity),反映了线性方程组 Ax=0 的自由变量个数。
    • 依赖于线性变换:零空间的具体形式取决于线性变换 T 或矩阵 A 的性质

二者的区别

  1. 组成元素不同

    • 零子空间:仅包含零向量 0。
    • 零空间:包含所有被线性变换或矩阵映射到零向量的向量,可能包含非零向量。
  2. 维数不同

    • 零子空间:维数始终为 0。
    • 零空间:维数可能为 0,也可能大于 0,具体取决于线性变换或矩阵的性质。
  3. 角色不同

    • 零子空间:作为向量空间中最小的子空间,主要在理论上具有重要性。
    • 零空间:在解决实际问题时,如求解线性方程组、判断线性相关性等,具有实用价值。

关联

  • 当线性变换或矩阵的零空间仅包含零向量时(即零空间等于零子空间),说明该变换是单射,矩阵是满秩矩阵
  • 在这种情况下,零空间和零子空间是相同的。

矩阵等价和矩阵相似的区别

一、矩阵等价

1. 定义

对于两个相同大小的矩阵 A 和 B(可以是 m×n的矩阵,不要求是方阵),如果存在可逆矩阵 P(大小为 m×m)和 Q(大小为 n×n),使得:

B=PAQ

那么我们称矩阵 A 和 B 等价

2. 特点

  • 行与列变换:矩阵等价可以看作是对矩阵 A 施加了一系列的可逆行变换(通过 P)和可逆列变换(通过 Q)。
  • 适用于任意矩阵:矩阵等价不要求矩阵是方阵,因此适用于任意大小的矩阵。
  • 保持矩阵的秩:等价矩阵具有相同的秩(Rank),因为可逆行和列变换不会改变矩阵的秩。
  • 标准形:通过等价变换,可以将矩阵化为标准形(如阶梯形、规范形),用于解决线性方程组和矩阵分解等问题。

二、矩阵相似

1. 定义

对于两个 n×n 的方阵 A 和 B,如果存在可逆矩阵 P(大小为 n×n),使得:

eq?B%3DP%5E%7B-1%7DAP

那么我们称矩阵 A 和 B 相似

2. 理解

这里的 P 矩阵可以被视为一个从旧基底 B 到新基底 B′的转换矩阵。当我们用P^{-1}将一个向量从新基底表示转换回旧基底表示,然后应用线性变换 A,再用 P 将结果转换回新基底表示时,最终的结果就是矩阵 B 对该向量的作用效果。

同一个线性变换在不同的基下有不同的矩阵表示,这些不同的矩阵就是相似矩阵。

3. 特点

  • 基变换:矩阵相似表示在同一向量空间中,对同一线性变换在不同基下的表示。可逆矩阵 P 表示基的转换。
  • 仅适用于方阵:因为涉及到矩阵的逆和乘积,矩阵相似仅定义在方阵之间。
  • 保持特征值和特征多项式:相似矩阵具有相同的特征值、特征向量(在适当的基下)和特征多项式。
  • 保留性质:相似矩阵的行列式、迹(Trace)、秩、最小多项式等都相同。

三、二者的区别

1. 适用范围不同

  • 矩阵等价:适用于任意大小的矩阵,包括非方阵。
  • 矩阵相似:仅适用于方阵。

2. 变换方式不同

  • 矩阵等价:通过可逆的行和列变换,即左右分别乘以可逆矩阵 P 和 Q。
  • 矩阵相似:通过相同的基变换,即左右分别乘以eq?P%5E%7B-1%7D,表示同一空间内基的转换。

特征子空间

90993350df3946e2bc3255e804e6724e.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值