线性代数笔记五——列空间和零空间

本文探讨了矩阵的列空间和零空间的概念,包括它们的定义、如何通过矩阵的行操作确定它们的维度以及与线性方程组解的关系。同时,文章解释了线性相关和线性无关向量的重要性,以及如何通过消元法求解空间和零空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵的列空间

矩阵的零空间


子空间: 2个子空间,一个平面P,一个直线L。

P U L = PUL= PUL=所有在 P P P或者 L L L或者两者的向量,这些不属于子空间。

P n L = PnL= PnL=即在 P P P又在 L L L上的向量集合,该属于子空间。

子空间条件:

  1. 向量加法, V + M V+M V+M
  2. 向量数乘, C V CV CV
  3. 合起来构成线性组合
  4. 必须封闭的运算

__列空间:__记作 C ( A ) C(A) C(A)

A = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] A=\begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix} A= 123411112345

C ( A ) ∈ R 4 ​ C(A) \in R^4​ C(A)R4 ,向量列一,向量列二,向量列三,三个向量构不成向量空间,需要进行扩充成子空间,取线性组合即可。

三个四维向量的线性组合不等于整个四维空间,它只是一个较小的空间,这空间有多少?

需要同线性方程组联系起来。

抽象的定义背后,有实际目的, 是为了深刻认识 A X = b AX=b AX=b

A X = b AX=b AX=b对任意右侧向量是否都有解?NO.

什么样的b使方程组有解?

只有b是各列的线性组合时 A X = b ​ AX=b​ AX=b才有解,这时b在列空间内。

$$
\begin{bmatrix}1&1&2\2&1&3\3&1&4\4&1&5\end{bmatrix}
\begin{bmatrix}x_1\x_2\x_3\end{bmatrix}=
\begin{bmatrix}b_1\b_2\b_3\b_4\end{bmatrix}\

x_1=1,x_2=0,x_3=0,b=1,2,3,4\
x_1=0,x_2=1,x_3=0,b=1,1,1,1\
x_1=0,x_2=0,x_3=1,b=2,3,4,5
$$

列三=列一+列二,在列一与列二构成的平面上,没有任何__贡献__,可以说这是__“线性相关”,因此列三可以去掉,因此__矩阵 A A A的列空间__可以描述为 R 4 R^4 R4中的__二维子空间

A A A的零空间, A m ∗ n A_{m*n} Amn记作 N ( A ) N(A) N(A)

A X = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ 0 0 0 0 ] AX= \begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}= \begin{bmatrix}0\\0\\0\\0\end{bmatrix} AX= 123411112345 x1x2x3 = 0000

X X X向量包含三个分量,因此零空间是 R 3 R^3 R3的子空间,列空间是 R 4 R^4 R4的子空间

求列空间和零空间的一般方法是消元。

如何知道零空间是向量空间的?为什么它能称作“空间”?

检验: A X = 0 AX=0 AX=0的解构成一个子空间。(构筑子空间的两种方法)

如果 A X = 0 且 A X = 0 ; A V = 0 且 A W = 0 AX=0且AX=0;AV=0且AW=0 AX=0AX=0;AV=0AW=0 所以 A ( V + W ) = 0 A(V+W)=0 A(V+W)=0

V V V在零空间, W W W在零空间,那么 V + W V+W V+W也在零空间。

A V + A W = 0 ; A V = 0 ; A ( 12 V ) = 12 A ( V ) = 0 AV+AW=0;AV=0;A(12V)=12A(V)=0 AV+AW=0;AV=0;A(12V)=12A(V)=0

如果

A X = [ 1 1 2 2 1 3 3 1 4 4 1 5 ] [ x 1 x 2 x 3 ] = [ 1 2 3 4 ] AX= \begin{bmatrix}1&1&2\\2&1&3\\3&1&4\\4&1&5\end{bmatrix} \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}= \begin{bmatrix}1\\2\\3\\4\end{bmatrix} AX= 123411112345 x1x2x3 = 1234

所有解 X X X是否还构成子空间?NO

因为0不是 X X X的解,所以 X X X构不成子空间,解是不经过原点的平面或直线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值