通信之道-卷积

看 杨学志《通信之道》中关于卷积的理解

离散卷积

  • 离散冲击序列:
    δ [ n ] = { 1 , n = 0 0 , n ≠ 0 \delta[n]=\left\{\begin{matrix} 1, & n=0\\ 0, & n\neq 0 \end{matrix}\right. δ[n]={1,0,n=0n=0

  • 任何一个离散信号 x [ n ] x[n] x[n]都可以表达成如下形式:
    x [ n ] = ∑ k = − ∞ + ∞ x [ k ] δ [ n − k ] x[n]=\sum_{k=-\infty }^{+\infty } x[k]\delta[n-k] x[n]=k=+x[k]δ[nk]
    因为上述和式只有 k = n k=n k=n δ [ n − k ] = 1 \delta[n-k]=1 δ[nk]=1,其余为0,所以求和为 x [ n ] x[n] x[n]

  • 对于线性时不变(Linear time invariant, LTI)系统
    H { ⋅ } H\{\cdot\} H{}为LTI系统,则
    y [ n ] = H { x [ n ] } = H { ∑ k = − ∞ + ∞ x [ k ] δ [ n − k ] } = l i n e a r ∑ k = − ∞ + ∞ x [ k ] H { δ [ n − k ] } = t i m e   i n v a r i a n t ∑ k = − ∞ + ∞ x [ k ] h [ n − k ] y[n]=H\{x[n]\}=H\{\sum_{k=-\infty }^{+\infty } x[k]\delta[n-k]\}\\ \overset{linear}{=}\sum_{k=-\infty }^{+\infty }x[k]H\{\delta[n-k]\}\\ \overset{time~invariant}{=}\sum_{k=-\infty }^{+\infty }x[k]h[n-k] y[n]=H{x[n]}=H{k=+x[k]δ[nk]}=lineark=+x[k]H{δ[nk]}=time invariantk=+x[k]h[nk]
    上式即离散卷积
    y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ + ∞ x [ k ] h [ n − k ] y[n]=x[n]*h[n]=\sum_{k=-\infty }^{+\infty }x[k]h[n-k] y[n]=x[n]h[n]=k=+x[k]h[nk],若为因果系统(n时刻的输出只与n时刻之前的输入有关,则上式求和上限取为 n n n)

配个图

  • 物理意义的理解可参考 知乎[信号与系统]卷积的物理解释
    其中银行存钱的例子很形象
  • 个人理解:输入由很多冲击组成,在k时刻,冲击为x[k],系统的响应为h[n-k];那么在过去的 − ∞ -\infty 到n这段时间里,总的输出为x[k]h[n-k]的和,即为y[n]。

连续卷积

  • 线性时不变系统:
    y ( t ) = x ( t ) ∗ h ( t ) = ∫ − ∞ + ∞ x ( τ ) h ( t − τ ) d τ y(t)=x(t)*h(t)=\int_{-\infty}^{+\infty}x(\tau )h(t-\tau)d\tau y(t)=x(t)h(t)=+x(τ)h(tτ)dτ
    因果系统中积分上限为 t t t
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值