关于设置gpu在pycharm中运行torch深度学习无法检测到gpu问题

文章讲述了如何在PyCharm中设置GPU以运行Torch深度学习项目,包括确认CUDA和cuDNN配置,使用Anaconda创建虚拟环境,选择适合GPU的torch及相关包版本,以及通过代码检查GPU是否可用和版本信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于设置gpu在pycharm中运行torch深度学习

先前主要的设置步骤

1.对你的gpu配置cuda
2.cuDNN配置
3.使用anaconda创建虚拟环境
这上面可以参考博客
Pycharm如何配置GPU环境(win10搭建DL环境)

对于目标环境跑torch的深度学习还需要注意你使用的包是供给gpu运行
这里我们可以通过官网查询到相关信息,
torch深度学习相关包下载命令网址
官网关于使用pip命令配置相关包
通过官网这个命令你就可以不用专门去网址下载自己配套的whl文件
你需要知道这里的pytorch1.13.1和torch1.13.1+cu117的区别是前者是cpu的包,后者是gpu运行的包
所以你只需要查询到自己cuda对应的gpu的包,然后到官网中寻找这个配套命令就可以在你的终端中通过输入命令来进行下载torch 1.13.1+cu117以及对应的torchvision 与torchaudio 。
在配置完虚拟环境后尝试运行:

import torch
import torchvision
print(torch.__version__)
print(torchvision.__version__)
print(torch.cuda.is_available())

from torch.backends import cudnn
print(cudnn.is_available())```

运行结果:
在这里插入图片描述
这里的对应torch,torchvision版本,cuda,cudnn是否能检测到
如果不行再针对寻找方法

### 配置 PyCharm 正确调用 GPU 进行训练或计算 #### 安装合适的 CUDA 版本 为了确保能够正确调用 GPU,在安装 PyTorch 时应选择带有 `cu` 前缀的版本,该前缀后的数字代表所支持的 CUDA 版本号。例如,如果需要 CUDA 11.3,则应该下载并安装形如 `torch-cu113` 的包[^1]。 #### 设置环境变量 确认已设置好必要的环境变量以便操作系统可以识别 NVIDIA 显卡驱动程序以及相应的库文件路径。这通常涉及到更新系统的 PATH 和 LD_LIBRARY_PATH 变量来指向 CUDA 工具链的位置。 #### 创建虚拟环境并与 PyCharm 关联 建议创建一个新的 Python 虚拟环境用于项目开发,并在此环境中单独管理依赖项。完成之后可以在 PyCharm 中指定此虚拟环境作为项目的解释器。 ```bash conda create -n myenv python=3.8 source activate myenv pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113/ ``` #### 编写测试代码验证 GPU 是否可用 编写简单的脚本来检测当前设备是否能成功切换至 GPU运行: ```python import torch if not torch.cuda.is_available(): print('CUDA is not available') else: device = 'cuda' if torch.cuda.is_available() else 'cpu' tensor = torch.tensor([1., 2., 3.], device=device) print(f'Tensor on {device}:', tensor) ``` #### 使用 SSH 远程连接到具有 GPU 的服务器 对于那些本地机器缺乏强大显卡资源的情况,可以通过租借云服务提供商提供的 GPU 实例来进行模型训练工作。此时需按照如下步骤操作: - 下载并安装最新版 PyCharm; - 租赁具备合适配置的 GPU 计算节点; - 在 PyCharm 内部配置 SSH 连接参数(端口号、用户名及主机地址),具体可参照给定模板中的说明[^2]; - 将源码同步上传至远程容器内; - 利用终端窗口执行相关指令启动训练过程;
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值