除了稀疏稠密检索,第三层检索来了!推理信息检索让RAG真正理解你在问什么!

前言

最近看到一个很有意思的研究,说的是信息检索的三个层次:

  • Level 1: 关键词检索- 匹配相同的词
  • Level 2: 语义检索- 理解词的含义
  • Level 3: 推理检索- 需要逻辑思考才能找到答案

今天就跟大家聊聊这个"推理检索"到底是什么鬼,以及最新的一些进展。

什么是推理信息检索?

简单来说,推理信息检索就是需要动脑子思考才能找到相关信息的能力,而不是简单地匹配关键词或者理解语义。

举个例子,假设我问:

“家里给植物浇水后,盘子里的积水可以重复使用吗?对植物有害吗?”

一个真正能推理的检索系统会明白:

  1. 盘子里的水含有溶解的矿物质
  2. 这些可能包括肥料中的可溶性盐分
  3. 需要找关于盐分积累和根部损伤的文档
  4. 即使这些文档从来没提过"重复使用盘子里的水"这个说法

这就是推理检索的厉害之处 - 它能理解问题背后的逻辑,而不只是字面意思。

现有检索可能失败?

最近有个叫BRIGHT的基准测试,专门用来测试这种推理检索能力。测试结果让人大跌眼镜:

  • 在MTEB排行榜上拿59分的顶级模型
  • 在BRIGHT上只能拿18分
  • 这差距也太大了吧!

这说明什么?现在的检索系统在面对需要推理的复杂问题时,基本上是一头雾水。

图片

来自论文:https://arxiv.org/pdf/2407.12883

新的救星:Reason-ModernColBERT

就在最近,LightOn团队发布了Reason-ModernColBERT模型,在BRIGHT基准测试上取得了不错的成绩。虽然只有1.5亿参数,但效果相当不错。

实际测试效果如何?

笔者拿了三个文档来测试:

文档1(高度相关):讲可溶性盐分的危害

容器植物中的可溶性盐分会在水分蒸发后积累,重复使用排水会让盐分浓度升高,
难以让植物吸收水分。高盐分会直接损伤根部,导致叶尖发黄、萎蔫等问题。
最好的做法是倒掉托盘里的水,不要重复使用。

文档2(不相关但有迷惑性):讲节水园艺

节水园艺对可持续发展很重要。包括覆盖减少蒸发、选择耐旱植物、
收集雨水等技术。滴灌系统能直接给根部供水,减少浪费。
这些方法能减少50%的用水量。

文档3(有些相关):基础浇水指南

大多数室内植物在土壤表面干燥时需要浇水。
要彻底浇透直到底部排水孔流出水,然后30分钟后倒掉托盘积水防止烂根。
不同植物需求不同,多肉需要少水,热带植物喜欢土壤保持湿润。

测试结果

使用原始问题查询:

  1. 文档1(最相关):得分 -82.11
  2. 文档3(有些相关):得分 -78.09
  3. 文档2(不相关):得分 -69.92

排序完全正确!即使文档2里"水"这个词出现了很多次,但模型还是能准确识别出真正相关的文档。

加上推理过程效果更好

如果在查询中加上推理过程:

用户想知道重复使用植物排水是否安全。
关键问题是理解水通过土壤后会发生什么。
可能含有溶解的矿物质和肥料中的盐分。
需要找关于矿物质积累、盐浓度对植物影响的信息...

结果得分差距更大:

  1. 文档1:-97.82(相关性更高)
  2. 文档3:-83.31
  3. 文档2:-79.71

技术实现细节

Reason-ModernColBERT使用了多向量架构,每个文档不是用单一向量表示,而是用多个向量的集合。这样能更好地捕捉文档的不同方面。

在Weaviate中的使用也很简单:

reasoning = """
The user wants to know if reusing plant drainage water is safe.
The key issue is understanding what happens to water after it passes through soil.
It likely contains dissolved minerals and salts from fertilizers.
We need to find information about mineral buildup, salt concentration effects on plants, and whether reused water can harm plant roots through excessive salt accumulation.
"""

将推理过程和查询问题拼接,完整代码可以查看:

https://github.com/weaviate/recipes/blob/main/weaviate-features/multi-vector/reason_moderncolbert.ipynb
response = collection.query.near_vector(
    near_vector=model.encode((query + reasoning), is_query=True),  # Raw embedding, in [[e11, e12, e13, ...], [e21, e22, e23, ...], ...] shape
    target_vector="multi_vector",
    return_metadata=weaviate.classes.query.MetadataQuery(
            distance=True,
        ),
)

for result in response.objects:
    print(result.properties)
    print(result.metadata.distance)

BRIGHT基准测试收集了1398个真实世界的复杂查询,涵盖经济学、心理学、机器人学、软件工程等多个领域。

为什么现有模型表现这么差?

主要原因是现有的检索基准测试太简单了,都是一些直接的信息查询,用关键词或语义匹配就够了。但现实世界的问题往往需要:

  1. 逻辑推理- 理解问题背后的原理
  2. 知识连接- 将不同概念联系起来
  3. 深层理解- 不只是表面的词汇匹配

真实案例分析

比如编程问题:要找到某个函数的文档,不仅需要知道函数名,还要理解代码的逻辑和语法结构。

再比如数学问题:要找到相关的定理证明,需要理解数学概念之间的逻辑关系。

对RAG系统的影响

这项研究对检索增强生成(RAG)系统有重要意义:

传统RAG的问题

  • 检索到的文档质量不高
  • 无法处理复杂的推理问题
  • 生成的答案缺乏逻辑性

推理检索的改进

  • 能找到真正相关的背景知识
  • 支持复杂问题的回答
  • 提高答案的准确性和可信度

结语

推理信息检索代表了搜索技术的一个重要发展方向。虽然目前的模型表现还不够完美,但Reason-ModernColBERT等新模型已经展现了很大的潜力。

随着技术的不断发展,我们期待看到更多能够真正"理解"用户问题的智能检索系统。这不仅会改变我们获取信息的方式,也会推动人工智能向更高层次的推理能力发展。

毕竟,真正的智能不应该只是记住很多信息,而是要知道如何思考和推理。

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

<think>嗯,用户的是如何优化和提升RAG模型的效果和性能。首先,我得回忆一下RAG的基本结构。RAG分为检索、增强和生成三个部分,每个部分都有优化的空间。先想检索阶段的优化,可能需要改进数据预处理,比如分块策略。然后,检索器的选择也很重要,比如用稠密检索还是稀疏检索,或者结合两者。还有,查询扩展和重写,比如用HyDE生成假设文档,可能提高相关性。 然后是增强阶段的优化,如何把检索到的信息更好地整合到生成中。可能需要动态上下文筛选,去掉不相关的部分。还有元数据过滤,根据时间或来源筛选文档。另外,多文档融合也是个点,结合不同来源的信息提升准确性。 生成阶段的话,模型微调肯定有帮助,用领域数据微调生成模型。提示工程也很关键,设计好的模板引导模型生成更准确的回答。多步推理和验证,比如让模型检查引用是否正确,避免幻觉。 系统层面的优化包括多数据源整合,增强上下文多样性。缓存机制能减少重复计算,比如缓存常用检索结果。异步处理可以并行检索和生成,提高响应速度。硬件加速比如用GPU加速向量检索,或者模型量化减小体积。 实际应用场景可能涉及客服、医疗、金融等领域,不同场景优化重点不同。比如客服需要实时性,医疗需要准确性。最后要持续评估,用BLEU、ROUGE这些指标,还有人工评估,根据反馈迭代优化。 用户可能还关心具体的例子或方法细节,比如HyDE怎么用,或者分块策略有哪些。需要确保回答覆盖主要方面,结构清晰,分点说明。同时引用提供的资料,比如整合多数据源来自引用[2],分解工作流程到三个部分来自引用[3]。最后生成相关题,帮助用户深入理解。</think>以下从多个层次分步说明如何优化和提升RAG检索增强生成)模型的性能与效果: ### 一、检索阶段优化 1. **数据预处理增强** - 采用动态分块策略,根据语义边界划分文档(如段落/章节),避免机械式固定长度分块 - 使用句向量模型$E=bert(sentence)$计算语义相似度,建立层次化索引结构 - 增加元数据标注(如文档类型、时间戳、权威等级),支持多维度过滤[^3] 2. **检索器优化** - 混合检索策略:稠密检索(DPR)与稀疏检索(BM25)的加权融合 - 查询扩展技术:通过LLM生成同义查询$Q'=LLM(Q)$,扩展原始查询语义空间 - HyDE(假设文档嵌入):生成假设性回答作为检索依据[^4] $$ \text{HyDE}(Q) = E(LLM_{\text{gen}}(Q)) $$ ### 二、增强阶段优化 1. **上下文优化** - 动态上下文筛选:通过交叉注意力机制计算$Attention(Q, D_i)$,过滤低相关性片段 - 元数据加权:时效性强的文档赋予更高权重$w_t = f(t_{\text{current}} - t_{\text{doc}})$ - 多文档融合:跨文档证据验证,消除信息冲突[^2] 2. **知识增强** - 知识图谱注入:将结构化知识三元组$(h,r,t)$转换为自然语言描述 - 外部API集成:实时获取最新数据(如股票行情/天气) - 多模态增强:结合图像OCR文本、视频字幕等跨模态信息 ### 三、生成阶段优化 1. **生成控制** - 约束解码:通过前缀树(Trie)限制生成词汇在检索范围内 - 引用标注:自动标记生成内容对应的文档片段$[D_3:p42-45]$ - 置信度校准:输出概率映射为$P_{\text{final}} = P_{\text{gen}} \cdot P_{\text{retrieval}}$ 2. **模型微调** - 两阶段微调:先领域适应预训练(DAPT),再任务特定微调(TSFT) - 对比学习:构造正例(相关答对)和负例(不相关文档)进行训练 - LoRA适配器:低秩矩阵微调技术,参数效率提升80%[^1] ### 四、系统级优化 | 优化方向 | 具体方法 | 效果提升 | |----------------|-----------------------------------|----------------| | 多数据源整合 | 融合结构化DB+非结构化文本+知识图谱 | 准确性+15% | | 缓存机制 | Redis缓存高频检索结果 | 延迟降低40% | | 异步流水线 | 并行执行检索与生成 | 吞吐量2倍提升 | | 硬件加速 | GPU加速向量检索 | QPS提升5倍 | ### 五、评估与迭代 1. 构建多维评估体系: - 事实准确性(FactScore) - 引用恰当性(CitationRecall) - 生成流畅度(BLEU/ROUGE) 2. 持续反馈机制: ```python def feedback_loop(user_rating): if user_rating < threshold: add_to_retrain_queue() update_retrieval_weight() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值