笔者由于在做可解释机器学习,后来在pytorch的discussion上终于找到了相应的解决方案,应该是全中文社区唯一能用的,英文社区也只仅有一个地方提到了这个,这里给大家看下我是怎么实现约束神经网络的权重和偏置的。
方法一:
首先编写模型结构:
class Model(nn.Module):
def __init__(self):
super(Model,self).__init__()
self.l1=nn.Linear(100,50)
self.l2=nn.Linear(50,10)
self.l3=nn.Linear(10,1)
self.sig=nn.Sigmoid()
def forward(self,x):
x=self.l1(x)
x=self.l2(x)
x=self.l3(x)
x=self.sig(x)
return(x
然后编写限制权重范围的类:
class weightConstraint(object):
def __init__(self):
pass
def __call__(self,module):
if hasattr(module,'weight'):
print("Entered")
w=module.weight.data
w=w.clamp(0.5,0.7) #将参数范围限制到0.5-0.7之间
module.weight.data=w
最后实例化这个类,对权重进行限制:
# Applying the constraints to only the last layer
constraints=weightConstraint()
model=Model()
#模型训练的时候再写下面这段代码:
model._modules['l3'].apply(constraints)
方法二:
在模型train的时候,对参数的范围进行限制:
loss = criterion(out, var_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
for p in net.parameters():
p.data.clamp_(0, 99)
将权重和偏执的范围限制到0-99之间。
仅限制权重的范围,不限制偏执的范围:
for p in net.parameters():
p.register_hook(lambda grad: torch.clamp(grad, 0,10))