傅里叶变换的推导

傅里叶变换 编辑

一种积分变换 ,它来源于函数的 傅里叶积分 表示。积分

傅里叶变换    (1)

称为 ƒ  的傅里叶积分。周期函数在一定条件下可以展成傅里叶级数,而在(-∞,∞)上定义的非周期函数 ƒ,显然不能用三角级数来表示。但是J.-B.-J.傅里叶建议把ƒ 表示成所谓傅里叶积分的方法。设 ƒ ( x )是(- l , l )上定义的 可积函数 ,那么在一定条件下, ƒ ( x )可以用如下的傅里叶级数来表示:

傅里叶变换

(x∈(-Л, Л)),    (2)

式中

傅里叶变换。 (3)

把(3)代入(2),即有

傅里叶变换

式中 u n / l  ( n =1,2,…); 傅里叶变换 l→∞时,上式第一项趋于0,级数换成积分,因此形式上就成为

傅里叶变换。 (4)

这就是傅里叶积分的直观推导。记号~表示右方的积分是从  ƒ 得来的,它并不意味着右方积分收敛,即使收敛,也未必等于 ƒ ( x )。 


2.傅里叶积分的收敛判别法  

类似于傅里叶级数,相应的收敛判别法也有多种。为了简单起见,假定ƒ是连续的。  

① 迪尼判别法 假如对于某个h>0,积分

傅里叶变换

那么 ƒ 的傅里叶积分(1)在点 x 收敛于 ƒ ( x )。 
  ② 狄利克雷- 若尔当 判别法 如果函数 ƒ 在含有点 x 的某区间,例如( x - h , xh )上分段单调,则 ƒ  的傅里叶积分在点 x 收敛于 ƒ ( x )。  


3.傅里叶积分的复数形式  

傅里叶积分(1)中的内层积分傅里叶变换u的偶函数,所以(4)式可以形式地写成

傅里叶变换。 (5)

另一方面,积分 傅里叶变换 u 的奇函数,所以形式上,积分 

傅里叶变换, (6)

合并(5)与(6),利用公式e  =cos θ +isin θ ,即得

傅里叶变换  (7)

最后的积分称为 ƒ 的傅里叶积分的复数形式。  


4.傅里叶变换与傅里叶逆变换  

(7)中内层积分

       傅里叶变换,     (8)------公式(u是频率,可以认为是原时域f(x)的“象”,原时域f(x)为“原象”,这也就进行了转换)

称为ƒ 的傅里叶变换,记为弮( u )。在一些书中,积分前面的因子 傅里叶变换 傅里叶变换 代替,相应地,下面的逆变换积分前面应添加因子 傅里叶变换 。以上都假定了函数 ƒ l 1  (-∞,∞),所以(8)中的积分是存在的。进一步可以证明, ƒ 的傅里叶变换弮( u )是 u 的连续函数;当 u →±∞时,弮( u )→0;此外,若弮( u l 1  (-∞,∞),则几乎处处成立下面的逆转关系:

      傅里叶变换。      (9)----公式

上式称为弮(u )的傅里叶逆变换。例如 傅里叶变换 的傅里叶变换弮( u )等于 傅里叶变换 ;而弮( u )的傅里叶逆变换是 傅里叶变换 。 
三角波脉冲函数的傅里叶变换(Fourier Transform, FT)是一种将离散时间信号转换成频域表示的重要数学工具。对于一个简单的三角波信号,比如周期为\( T \)的单位三角波 \( u(t) = \frac{2}{T} \cdot |t| \), 其傅里叶变换可以通过直接应用傅里叶变换公式来求解: \[ U(f) = \mathcal{F}\{u(t)\} = \int_{-\infty}^{\infty} u(t) e^{-j2\pi ft} dt \] 由于单位三角波是非平滑的,在0到\( T \)区间上是一条直线,而在其他区间则是零,我们可以分段处理这个积分。 当\( -\frac{T}{2} < t < \frac{T}{2} \),即在一个完整的周期内,\( u(t) \) 的值为1,所以: \[ U(f) = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |t| e^{-j2\pi ft} dt \] 对绝对值函数分解成两部分: \[ U(f) = \frac{4}{T} \left[ \int_{0}^{\frac{T}{2}} t e^{-j2\pi ft} dt - \int_{-\frac{T}{2}}^{0} (-t) e^{-j2\pi ft} dt \right] \] 这两个积分可以分别计算,因为它们是对称的。 计算每个积分并代入得到: \[ U(f) = \frac{4}{T} \left[ \left(\frac{-1}{j2\pi f} e^{-j2\pi f\frac{T}{2}} - \frac{j2\pi f}{(j2\pi f)^2+1}e^{-j2\pi f\frac{T}{2}}\right) - \left(-\frac{1}{j2\pi f} e^{j2\pi f\frac{T}{2}} + \frac{j2\pi f}{(j2\pi f)^2+1}e^{j2\pi f\frac{T}{2}}\right)\right] \] 简化后我们得到: \[ U(f) = \frac{8}{T} \cdot \frac{1}{(j2\pi f)^2+1} \] 这表明,单位三角波的傅里叶变换是一个包含两个洛伦兹分布(Lorentzian functions)的组合,每个分布在频率轴上对应正负半周。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值