纳什均衡的多重性问题
【性别战】焦点效应与焦点均衡
通过划线法可以确定本博弈问题有两个纳什均衡选择没分别是(时装,时装)和(足球,足球)。且这两个选择都是稳定解(是稳定解的原因是这两个选择单独一方改变都不会产生更好的收益)。
解决思路:第一种是均衡精炼(规范式的方法),通过定义更加精炼的博弈解,如子博弈精炼Nash均衡、精炼贝叶斯Nash均衡等,剔除不合理的均衡。思路具有普遍性,对所有的博弈问题都适用。第二种方法就是非规范式的方法,包括“焦点效应”、“相关均衡”等,针对特定博弈问题,给出具体的解决方法。
【斗鸡博弈】
【市场进入阻止】
上述几个例子都是有多个纳什均衡的博弈问题,由此看出:
所以有稳定性的解不一定有确定性的解。
解决思路:
- 第一种是均衡精炼(规范式的方法),通过定义更加精炼的博弈解,如子博弈精炼Nash均衡、精炼贝叶斯Nash均衡等,剔除不合理的均衡。思路具有普遍性,对所有的博弈问题都适用。
- 第二种方法就是非规范式的方法,包括“焦点效应”、“相关均衡”等,针对特定博弈问题,给出具体的解决方法。
纳什均衡的存在性问题:
如上例可知,纳什均衡并不总是存在的,纳什均衡有存在性的定理(条件):
- 【Nash均衡的存在性定理1】每一个有限的战略式博弈至少存在一个Nash均衡(包括纯战略和混合战略Nash均衡)。
- 【Nash均衡的存在性定理2】对于战略式博弈 G = N i , S i , U i G= {N_i,S_i,U_i} G=Ni,Si,Ui,若 S i S_i Si为欧氏空间的非空紧凸子集,支付函数 U i U_i Ui关于战略组合 S S S连续、关于 s i s_i si拟凹,则该博弈存在纯战略的Nash均衡。
- 【Nash均衡的存在性定理3】对于战略式博弈 G = { N i , S i , U i } G= \left\{N_i,S_i,U_i\right\} G={Ni,Si,Ui},若战略空间 S i = { s i } S_i= \left\{s_i\right\} Si={si}为距离空间中的非空紧子集,支付函数 u i u_i ui关于战略组合s连续,则该博弈存在混合战略的Nash均衡。