【博弈论】【第三讲】纳什均衡的其他问题---多重性与存在性

文章探讨了在博弈论中纳什均衡的多重性问题,特别是在性别战和斗鸡博弈等例子中。当存在多个稳定的纳什均衡时,可以通过均衡精炼方法(如子博弈精炼Nash均衡)或非规范式方法(如焦点效应)来解决。同时,文章提到了纳什均衡的存在性定理,保证了有限博弈中至少存在一个均衡。
摘要由CSDN通过智能技术生成

纳什均衡的多重性问题

【性别战】焦点效应与焦点均衡
在这里插入图片描述
通过划线法可以确定本博弈问题有两个纳什均衡选择没分别是(时装,时装)和(足球,足球)。且这两个选择都是稳定解(是稳定解的原因是这两个选择单独一方改变都不会产生更好的收益)。
解决思路:第一种是均衡精炼(规范式的方法),通过定义更加精炼的博弈解,如子博弈精炼Nash均衡、精炼贝叶斯Nash均衡等,剔除不合理的均衡。思路具有普遍性,对所有的博弈问题都适用。第二种方法就是非规范式的方法,包括“焦点效应”、“相关均衡”等,针对特定博弈问题,给出具体的解决方法。

【斗鸡博弈】
在这里插入图片描述
【市场进入阻止】
在这里插入图片描述
上述几个例子都是有多个纳什均衡的博弈问题,由此看出:
所以有稳定性的解不一定有确定性的解。

解决思路:

  1. 第一种是均衡精炼(规范式的方法),通过定义更加精炼的博弈解,如子博弈精炼Nash均衡、精炼贝叶斯Nash均衡等,剔除不合理的均衡。思路具有普遍性,对所有的博弈问题都适用。
  2. 第二种方法就是非规范式的方法,包括“焦点效应”、“相关均衡”等,针对特定博弈问题,给出具体的解决方法。

纳什均衡的存在性问题:

在这里插入图片描述
如上例可知,纳什均衡并不总是存在的,纳什均衡有存在性的定理(条件):

  1. 【Nash均衡的存在性定理1】每一个有限的战略式博弈至少存在一个Nash均衡(包括纯战略和混合战略Nash均衡)。
  2. 【Nash均衡的存在性定理2】对于战略式博弈 G = N i , S i , U i G= {N_i,S_i,U_i} G=Ni,Si,Ui,若 S i S_i Si为欧氏空间的非空紧凸子集,支付函数 U i U_i Ui关于战略组合 S S S连续、关于 s i s_i si拟凹,则该博弈存在纯战略的Nash均衡。
  3. 【Nash均衡的存在性定理3】对于战略式博弈 G = { N i , S i , U i } G= \left\{N_i,S_i,U_i\right\} G={Ni,Si,Ui},若战略空间 S i = { s i } S_i= \left\{s_i\right\} Si={si}为距离空间中的非空紧子集,支付函数 u i u_i ui关于战略组合s连续,则该博弈存在混合战略的Nash均衡。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

兜兜里有好多糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值