全基因组关联分析(GWAS)软件:MAGMA

本文介绍了如何使用MAGMA软件进行基因和基因集的关联分析,包括SNP注释、基于基因的GWAS以及基因集分析的步骤,并提供了遇到的‘GLIBCXX_3.4.20’not found问题的解决方法,即检查系统中的libstdc++.so.6版本并更新或通过conda安装高版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MAGMA软件被设计用于基于基因的(gene-based)或基因集的(gene-set-based)的关联分析,可以直接找到与目的性状相关的功能基因或功能模块(如基因调控通路等),也有利于发现由多个微效 SNP 关联的基因。
MAGMA 的输入数据可以是原始的基因型数据,也可以是其它关联分析软件的结果(如emmax、gemma等)。

本文用 emmax 的关联分析结果作为输入文件,因为 MAGMA 虽然可以用原始数据进行单位点的关联分析,但是它的运行速度没有 emmax 快。

1. SNP 注释

MAGMA 需要一个 SNP 注释信息文件,内容包括 SNP 位于基因的什么位置。

~/tools/magma --annotate nonhuman window=3,1.5 --snp-loc snp_hardfiltered_biallelic_maf5_ms50_chr_imputated.bim --gene-loc gene_locations.txt --out magma_annotation
  • –snp-loc:SNP位置文件,可以用plink的.bim文件,或者文本格式为:
SNPidchrpos
  • –gene-loc:文本格式为:
geneIDchrstartend+/-symbol

前四列必须。

2. gene-based GWAS
~/tools/magma --bfile snp_hardfiltered_biallelic_maf5_ms50_chr_imputated --gene-annot magma_annotation.genes.annot --pval blup.ps N=355 use=1,3 --out test
  • –gene-annot:注释文件
  • –pval:GWAS结果
  • N:样本数
  • use=1,3: 表示GWAS结果中snpID位于第1列,P值位于第3列
3. gene-set-based
~/tools/magma --gene-results blup.genes.raw --set-annot KEGG-pathways_first2.txt col=1,2 --out test
  • –gene-results:每二步产生的.genes.raw文件
  • –set-annot [file] col=1,2:基因集文件,第一列是geneID,第二列是基因所属set(可以是KEGG或者 GO条目或自设的基因通路)
遇到的问题
  • */lib64/libstdc++.so.6: version `GLIBCXX_3.4.20’ not found **
    原因:系统自带libstdc++.so.6版本过低,或自己安装高版本但系统gcc库没有更新,无法找到
    解决办法:
首先,查看系统中所有libstdc++.so.6 版本
$ locate libstdc++.so.6
/home/liuqb/miniconda3/envs/magma/lib/libstdc++.so.6
/home/liuqb/miniconda3/envs/magma/lib/libstdc++.so.6.0.19
/home/liuqb/miniconda3/envs/magma/lib/libstdc++.so.6.0.19-gdb.py
/home/liuqb/miniconda3/envs/magma/lib/libstdc++.so.6.0.27
/home/liuqb/miniconda3/envs/magma/lib64/libstdc++.so.6
/home/liuqb/miniconda3/envs/magma/lib64/libstdc++.so.6.0.27
/home/liuqb/miniconda3/envs/magma/x86_64-conda_cos6-linux-gnu/sysroot/lib/libstdc++.so.6
/home/liuqb/miniconda3/envs/magma/x86_64-conda_cos6-linux-gnu/sysroot/lib/libstdc++.so.6.0.27
....
查看6.0.27中的GLIBCXX版本
$strings /home/liuqb/miniconda3/envs/magma/lib64/libstdc++.so.6.0.27|grep GLIBCXX
。。。
GLIBCXX_3.4.20
GLIBCXX_3.4.21
GLIBCXX_3.4.22
GLIBCXX_3.4.23
GLIBCXX_3.4.24
GLIBCXX_3.4.25
GLIBCXX_3.4.26
GLIBCXX_3.4.27
。。。
有GLIBCXX_3.4.20
将该库写入.basr_profile,32位系统用/lib,64位系统用/lib64
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/miniconda3/envs/magma/lib64/
若没有高版本的libstc++.so.6,可用conda安装,https://anaconda.org/
conda install -c prometeia libgcc-ng
<think>嗯,用户想了解如何使用MAGMA进行GWAS数据分析,特别是AD和OP GWAS的性状富集分析,包括组织和通路分析,并且需要详细的步骤和R代码。首先,我需要回忆MAGMA的基本流程,确保步骤正确。 MAGMA主要用于基因和基因集层面的关联分析,输入可以是原始基因型数据或其他软件的结果。用户可能已经有GWAS结果,所以需要先进行数据准备。然后是安装MAGMA软件,这可能涉及到下载和路径设置。接下来是注释步骤,把SNP映射到基因,这一步需要参考基因组文件,比如g1000_eur。然后是基因分析,生成基因水平的P值。最后是基因集富集分析,包括组织特异性和通路分析。 用户提到AD和OP GWAS,可能是指阿尔茨海默病和骨质疏松症,所以需要确保参考数据如基因集和组织表达数据是否适用。R代码部分可能需要调用MAGMA的命令行工具,或者有相关的R包吗?不过MAGMA本身是命令行工具,所以R中可能需要用system()函数来执行命令。此外,富集分析后的结果可视化可能需要用R的ggplot2或其他包。 需要注意检查每个步骤的参数是否正确,比如在基因分析时,选择正确的模型和选项。还有,基因集文件可能需要用户自己准备,或者使用现有的数据库,比如MSigDB或GTEx的组织特异性基因集。在组织富集分析中,用户需要下载相应的基因表达数据,比如使用MAGMA提供的标准文件。 可能的问题:用户是否已经安装了MAGMA?是否有足够的计算资源?数据格式是否正确?需要提醒用户检查输入文件的格式,比如GWAS结果需要包含SNP、P值等信息。另外,路径设置是否正确,避免文件找不到的错误。 在写R代码时,要确保路径正确,命令字符串拼接无误。例如,生成基因关联分析的代码可能需要指定输入文件、输出前缀、基因注释文件等。富集分析部分,要指定基因集文件和协变量文件(如样本量)。 最后的结果可视化部分,可能需要读取输出文件,然后绘制柱状图或热图。需要确保用户安装必要的R包,如ggplot2和dplyr。同时,要解释结果的意义,比如富集分数和P值的含义。 可能还需要考虑性能问题,比如MAGMA处理大数据时的内存和计算时间。另外,用户可能需要进一步的帮助,比如如何解释结果中的特定数值,或者如何处理多步骤中的错误。 总结下来,步骤应该是:安装MAGMA、数据准备、基因注释、基因分析、基因集富集分析(组织和通路)、结果可视化。每个步骤需要对应的命令和R代码,并解释关键参数。同时,引用提供的参考文献中的相关内容,比如引用[2]关于MAGMA的功能,引用[3]关于整合多模态数据的方法。</think>### MAGMA GWAS分析步骤及R代码实现 #### 一、MAGMA分析流程概述 MAGMA分析流程包含四个核心步骤:**数据准备**、**基因注释**、**基因分析**和**基因集富集分析**。其核心优势在于将SNP水平的关联信号提升到基因或功能模块层面,适用于AD(阿尔茨海默病)、OP(骨质疏松症)等复杂性状的遗传机制解析[^2]。 --- #### 二、详细步骤与R代码 ##### 1. **数据准备** - **输入文件要求**: - GWAS结果文件:包含SNP ID(rsID)、P值、样本量等字段 - 参考基因组文件(如g1000_eur) ```r # R中读取GWAS数据示例 gwas_data <- read.table("AD_GWAS.txt", header=TRUE) ``` ##### 2. **安装MAGMA** ```r # 通过系统命令调用MAGMA(需提前下载) system("wget https://ctg.cncr.nl/software/MAGMA/prog/magma_v1.10.zip") system("unzip magma_v1.10.zip") ``` ##### 3. **SNP注释到基因** ```r # 使用NCBI 37.3版本注释 system("magma --annotate window=35,10 --snp-loc gwas_data.snploc --gene-loc NCBI37.3.gene.loc --out AD_anno") ``` - `window=35,10`表示基因上下游扩展35kb和10kb的调控区域 ##### 4. **基因关联分析** ```r system("magma --bfile g1000_eur --gene-annot AD_anno.genes.annot --pval gwas_data.txt ncol=N --out AD_gene") ``` - `ncol=N`指定GWAS结果中P值所在列号 ##### 5. **组织特异性富集分析** ```r # 使用GTEx v8表达数据 system("magma --gene-results AD_gene.genes.raw --gene-covar GTEx_v8.gene_covariates.txt --model condition=ALL --out AD_tissue") ``` - 结果文件`AD_tissue.gsa.out`包含各组织富集P值 ##### 6. **通路富集分析** ```r system("magma --gene-results AD_gene.genes.raw --gene-set GO_terms.gmt --out AD_pathway") ``` --- #### 三、结果解读 1. **基因水平结果**: - 查看`AD_gene.genes.out`,关注`P`值和`Q`值(FDR校正后) 2. **组织富集**: - 筛选`AD_tissue.gsa.out`中`P_BONF`<0.05的组织 3. **通路富集**: - 分析`AD_pathway.gsa.out`中`P`值显著的GO/KEGG通路 ```r # 结果可视化示例(ggplot2) library(ggplot2) tissue_res <- read.table("AD_tissue.gsa.out", header=TRUE) ggplot(tissue_res, aes(x=-log10(P), y=reorder(VARIABLE, -log10(P)))) + geom_col(fill="#69b3a2") + labs(title="组织特异性富集分析结果", x="-log10(P-value)", y="组织类型") ``` --- #### 四、高级应用 1. **多性状联合分析**:结合AD和OP的GWAS结果 ```r system("magma --gene-results AD_gene.genes.raw OP_gene.genes.raw --model multi --out AD_OP_combined") ``` 2. **条件分析**:排除已知风险基因的影响 ```r system("magma --gene-results AD_gene.genes.raw --gene-covar known_risk_genes.txt --model condition=APOE --out AD_conditional") ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值