3步搞定GWAS中的Gene Set Analysis

本文介绍了GWAS中的Gene Set Analysis(GSA),它是在SNP分析基础上的更高层次挖掘。MAGMA是一款进行GSA分析的工具,分析包括3步:1. annotation,预处理SNP映射到基因;2. gene analysis,基于SNP分析结果进行基因水平分析;3. gene set analysis,进行基因集分析。通过这些步骤,可以在基因和通路层面发现更多关联信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注”生信修炼手册”!

GWAS中的Gene Set Analysis, 简称GSA分析,是从基因或者通路水平来进行关联分析,是建立在SNP水平的的GWAS分析结果基础上的,在更高的层次进行深入挖掘,以发现更加有用的信息。MAGMA是进行GSA分析的一款工具,其官网如下

https://ctg.cncr.nl/software/magma

该软件的安装过程如下

wget https://ctg.cncr.nl/software/MAGMA/aux_files/NCBI37.3.zip
unzip NCBI37.3.zip

其分析步骤共分为以下三大步

1. annotation

第一步是一个预处理步骤,将SNP位点映射到基因上去。根据SNP的染色体位置进行判断,如果落在了某个基因内,则映射到该基因上,当然也支持基因区间的延伸,比如想将基因启动区的SNP也纳入研究范围,可以通过参数将基因的区间在上下游进行拓展,基本用法如下

需要两个输入文件,第一个文件是SNP的染色体位置, 对应参数snp-loc, 这个文件可以有两种格式,一种就像上述示例一样,直接采用plink中后缀为.bim的文件,当我们有plink格式的原始数据时,采用这种方法非常方便,第二种是纯文本格式,要求前3列分别为SNP ID, 染色体名称,染色体位置,有这3列就够了,其他列信息会被忽略。

第二个是基因的染色体位置,对应参数gene-loc, 对于human而言,官网提供了3种基因组版本的该文件

该文件的内容示意如下

第一类为基因的Entrez ID, 第二列为染色体,第三列为转录起始,第四列为转录终止,前四列信息是必须的,第五列是基因的正负链,第六列是gene symbol。

运行成功后,会生成后缀为genes.annot的文件,内容如下

第一列为基因的Entrez ID, 第二列为染色体位置,其他列为对应的SNP ID,该软件的文本文件都用制表符\t分隔。如果需要拓展基因的区间,用法如下

上述用法表示在原来的基础上,上游延伸5kb, 下游延伸1.5kb。

2. gene analysis

基因水平的分析建立在SNP分析的基础上,该软件支持两种模式,第一种直接从原始的分型结果开始,第二种从GWAS分析结果,也就是SNP的P值开始,基本用法如下

bfile参数表示原始的分型结果,对于从SNP开始的分析,这个参数使用对应人群的分型结果即可,官网提供了1000G的数据供下载

gene-annot参数为第一步产生的SNP和基因的映射关系,pval参数为SNP对应的p值,格式如下

制表符分隔的两列,第一列为SNP的ID,第二列为对应的p值,输出文件后缀为genes.out, 内容示意如下

同时还会产生一个后缀为genes.raw的文件,用于后续的gene set分析。

3. gene set analysis

在基因分析的基础上,进行基因集的分析,基本用法如下

gene-results参数为第二步产生的文件,set-annot代表基因集,有如下两种格式

SET1表示基因集的名称,可以是pathway的编号,对应的基因集合用Entrez ID表示,输出结果后缀为.gsa.out, 内容示意如下

通过以上3步,就可以搞定GSA分析,该软件还支持添加协变量以及自变量间的相互作用,更多用法请参考官方文档。

·end·

—如果喜欢,快分享给你的朋友们吧—

往期精彩

  基因型填充

  CN

<think>好的,我需要帮助用户了解如何将Alzheimer的GWAS生信研究投稿到中科院二区的SCI期刊。首先,我要确定用户的需求是什么。他们可能已经完成了GWAS分析,现在需要选择合适的期刊进行投稿,并且希望期刊属于中科院二区的范围。中科院二区的期刊在影响因子和学术影响力上属于中等偏上,所以需要推荐合适的期刊,同时给出投稿建议。 首先,我应该回忆一下常见的生物信息学和遗传学领域的中科院二区期刊。例如,《Frontiers in Aging Neuroscience》可能是一个候选,因为它专注于衰老和神经退行性疾病,适合Alzheimer的研究。《Journal of Alzheimer&#39;s Disease》虽然更专业,但需要确认它是否属于二区。《Human Molecular Genetics》也可能符合,因为它涉及遗传学和疾病机制。另外,《PLOS ONE》虽然范围较广,但接受生信研究,且属于二区吗?需要核实分区。 接下来,我需要确保推荐的期刊确实在最新的中科院分区中属于二区。可能需要提醒用户自行确认,因为分区每年更新,可能会有变动。然后,要考虑每个期刊的特点,比如《Frontiers》系列可能有不同的子刊,用户需要选择最相关的。此外,投稿建议应包括研究创新性、数据质量、方法严谨性,以及补充实验的重要性,比如功能验证或多组学整合,以增加文章的竞争力。 还要注意用户的研究是纯生物信息学分析还是结合了实验数据。如果只有生信分析,可能需要更强调方法的创新性和结果的生物学意义。同时,推荐期刊时,应涵盖综合类、神经科学类、遗传学类和生信方法类,以提供多样化的选择。例如,《Bioinformatics》和《Briefings in Bioinformatics》是否属于二区?可能需要确认,但通常它们可能在计算生物学领域的高分区。 此外,投稿时的格式要求和审稿周期也是需要考虑的因素。例如,《PLOS ONE》审稿较快,但版面费较高;而专业期刊可能审稿更严格但影响力更大。需要建议用户根据研究质量和时间安排选择合适的期刊。 最后,要确保回答结构清晰,分点列出推荐期刊和投稿建议,并提醒用户注意期刊的最新分区和投稿指南。同时,鼓励他们在投稿前进行充分的数据验证和补充分析,以提高接受率。</think>针对Alzheimer的GWAS生信研究投稿中科院二区SCI期刊的推荐及策略,以下为分解析: --- ### **一、推荐期刊清单(2023年中科院分区参考)** 以下期刊在神经科学、遗传学及生物信息学领域具有影响力,且近年收录GWAS和Alzheimer相关研究: 1. **《Frontiers in Aging Neuroscience》**(中科院二区,IF: 4.8) - **优势**:专注神经退行性疾病,接受生信分析结合机制探讨的研究 - **适配方向**:GWAS新位点发现、遗传风险评分、多组学整合分析 2. **《Human Molecular Genetics》**(中科院二区,IF: 5.1) - **优势**:强调遗传学机制与疾病关联,偏好大样本GWAS+功能注释研究 - **适配方向**:新易感基因功能验证、通路富集分析、跨种族验证 3. **《Journal of Neuroinflammation》**(中科院二区,IF: 9.3) - **优势**:关注神经炎症机制,适合GWAS与免疫微环境交互分析 - **适配方向**:小胶质细胞相关基因筛选、炎症通路调控网络 4. **《Briefings in Bioinformatics》**(中科院二区,IF: 9.5) - **优势**:侧重生物信息学方法创新,需提出新算法或工具 - **适配方向**:GWAS数据挖掘算法开发、多组学数据整合模型 5. **《Aging and Disease》**(中科院二区,IF: 7.0) - **优势**:涵盖衰老相关疾病机制,接受临床-生信结合研究 - **适配方向**:遗传风险与临床表型关联、药物靶点预测 --- ### **二、投稿策略与关键要点** #### **1. 研究创新性提升** - **数据层面**: - 使用多队列验证(如ADNI、UK Biobank) - 整合表观基因组(eQTL/mQTL)或单细胞数据辅助注释 - **方法层面**: - 开发新型遗传评分模型(如PGS结合影像组学) - 应用因果推断方法(Mendelian Randomization) #### **2. 结果呈现优化** - **可视化要求**: - 曼哈顿图/QQ图需高清且标注显著位点(推荐使用$R$包`qqman`或`CMplot`) - 网络分析图需包含核心调控基因(如使用Cytoscape) - **统计严谨性**: - 多重检验校正(如Bonferroni或FDR) - 人群分层控制(PCA分析需在方法中明确说明) #### **3. 功能验证建议** - **计算验证**: - 使用$DeepSEA$或$Enformer$预测非编码变异调控效应 - 通过$FUMA$进行组织特异性富集分析 - **实验验证(可选但加分)**: - 候选基因在AD细胞模型(如iPSC衍生神经元)中敲除/过表达 - 利用斑马鱼或小鼠模型验证关键表型 --- ### **三、避坑指南** 1. **避免纯生信分析**: - 单纯GWAS+富集分析易被拒稿,需结合临床数据或实验验证 2. **注意数据权限**: - 公开数据库(如ADSP、IGAP)需明确引用数据来源 3. **审稿周期管理**: - 《Frontiers》系列平均3个月,《Human Molecular Genetics》约4-6个月 --- ### **四、期刊选择决策树** ```plaintext 研究类型 → 纯生信方法创新? → 是 → 《Briefings in Bioinformatics》 ↓否 → 含实验验证? → 是 → 《Human Molecular Genetics》 ↓否 → 侧重临床关联? → 是 → 《Aging and Disease》 ↓否 → 聚焦神经炎症? → 是 → 《Journal of Neuroinflammation》 ↓否 → 保守选择 → 《Frontiers in Aging Neuroscience》 ``` --- **投稿前务必核实期刊最新分区(可通过** [LetPub](https://www.letpub.com.cn/) **或** [中科院文献情报中心分区表](http://www.fenqubiao.com/) **查询)**,并严格遵循目标期刊的格式要求(如GWAS报告需遵循STREGA声明)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值