最小二乘配置

内容来源:
崔希璋, 於宗俦, 陶本藻,等. 广义测量平差(新版)[M]. 武汉测绘科技大学出版社, 2001.
贴在这里以备不时之需,自己抄一边,也就理解个七七八八了😜

一、简介

配置(Collocation)也称为拟合推估。最初是指组合各种资料来研究地球形状与重力场的一种数学方法,其理论由Trarup于1969年提出。在地球形状重力的研究中,配置的普遍形式是其函数模型中除包含随即部分外,还包含非随机部分(也称为倾向)。这种兼有求定信号和倾向参数的情况在其他测量平差问题中也往往会出现,用广义最小二乘平差原理平差这类问题,故称为最小二乘配置,简称为配置法。此外,在地球形状重力场以及其他平差问题中,常需要求定的是推估信号的最佳估值和倾向参数的最佳估值,而倾向参数又往往是某种拟合函数的系数,因此配置法又称为拟合推估。

二、公式推导

1、最小二乘滤波和推估公式的推导



2、最小二乘配置的推导



### 回答1: 最小二乘是一种数学方法,它用于拟合数据点并确定最佳拟合直线或曲线。最小二乘法的目标是通过最小化残差平方和来找到最佳拟合线或曲线。 最小二乘配置是一种应用最小二乘法的技术,它用于配置参数或模型以最小化残差平方和。最小二乘配置可用于线性回归、曲线拟合、非线性最小化等问题。 因此,最小二乘法和最小二乘配置都是使用相同的数学原理,即最小化残差平方和来拟合数据或配置模型。它们之间的区别在于应用的领域和具体实现的方法。 ### 回答2: 最小二乘配置是基于最小二乘原理的一种数据拟合方法。最小二乘配置主要用于确定一个数学模型的参数,使得模型与实际观测数据之间的残差平方和最小。 最小二乘是一种数学方法,用于拟合一个线性或非线性模型,并通过最小化残差平方和来确定模型的参数。最小二乘可以用来解决众多问题,例如回归分析、数据拟合等。 最小二乘配置最小二乘的具体应用,它将最小二乘方法应用在参数拟合问题上。最小二乘配置一般用于通过已知的观测数据,拟合一个数学模型,并确定模型的参数。最小二乘配置假设已知数据的误差服从正态分布,并最小化观测值与模型预测值之间的残差平方和。 最小二乘配置可以用于拟合线性模型、非线性模型等各种类型的数学模型。在最小二乘配置中,通过寻找残差平方和最小的参数组合,来确定最佳的模型拟合结果。 因此,最小二乘配置最小二乘方法的一种具体应用。最小二乘配置通过应用最小二乘方法解决参数拟合问题,寻找最佳参数组合来拟合数据。最小二乘配置最小二乘方法在原理上是一致的,都是通过最小化残差平方和来确定模型的参数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值