R 符号含义与常用数学运算 ∈ R 使用笔记

参考:R语言学习–特殊符号的意义:https://www.jianshu.com/p/76d1cf475827

1、常用符号含义

首先是一些符号的含义,包括特殊符号和加减乘除等。

符号含义示例
<-赋值a<-1
=赋值a=1
<<-向上一环境层写入变量暂不懂
==是否相等1==2
!=是否不等1!=2
`,
&, &&逻辑“与”
!逻辑“非” !T=FALSE
'"引起来表示字符串a='1'
+加法1+2=3
-减法2-1=1
*乘法2*2=4
/除法4/2=2
^指数2^3=8
%%求余7%%2=1
%/%取整7%/%2=3
:等差数列a=1:5(a=c(1,2,3,4,5))
[]提取数据a[3]=3
%in%是否包含2%in%a=TRUE
TyesTRUE
FnoFALSE
NAN不是数Not a number
NA数据缺失Not available
NULL不存在empty
Inf无穷大Infinity
~用于构建公式y~x1+x2
$数据框索引某列
@从R的类实例里面读取数据bg=x@colors
#其后内容为注释
::包名字::函数名
...通常用于定义函数时接收额外的参数,传给内部调用的其它函数。
`用于不规则变量名
!!通常配合sym用于需要传入变量的函数中
%>%管道符,上一个函数的输出传递给下一个函数作为输入。来源于magrittr包,同类型的还有%T>%,%$% 和 %<>%,具体查阅相应帮助文档

下面是一些符号的使用示例:

# !!的使用
xvariable_en = sym(xvariable)
yvariable_en = sym(yvariable)
p <- ggplot(data, aes(!!xvariable_en, !!yvariable_en))

2、常用数学函数

下面是一些常用的数学函数,实际上,那些基础的函数和其他语言有极大的相似之处。

名称含义示例
sign()取符号sign(-3)=-1
abs()求绝对值abs(-3)=3
sqrt()开平方sqrt(4)=2
floor()向下取整floor(3.4)=3
ceiling()向上取整ceiling(3.4)=4
round(x, n)小数点后n位四舍五入round(3.1415926,4)=3.1416
trunc()按绝对值向下取整trunc(-3.2)=-3
signif(x, n)四舍五入保留n位有效数字signif(3.1415926,4)=3.142
exp(n) e n e^n enexp(2)=7.389056
log(x, a) l o g a x log_ax logaxlog(8,2)=3
log2(x) l o g 2 x log_2x log2xlog2(8)=3
log10(x) l o g 10 x log_{10}x log10xlog10(100)=2
log1p(x) l n ( 1 + x ) ln(1+x) ln(1+x)log1p(1)=0
expm1(x) e x − 1 e^x-1 ex1expm1(1)=1.718282
pi π \pi π3.141593
sin, cos, tan求一个弧度的正弦 /余弦 /正切值sin(pi)=0
asin, acos, atan求正弦值、余弦值、正切值对应的弧度asin(1)=1.570796
atan2(y, x)求取原点到指定(x, y)点组成的向量的反正切值atan2(2,1)=1.107149
sinpi(x),cospi, tanpi类似 s i n ( π ∗ x ) sin(\pi*x) sin(πx)sinpi(0.5)=1
sinh, cosh, tanh计算双曲正弦值、双曲余弦值、双曲正切值 s i n h ( x ) = e x − e − x 2 sinh(x)=\dfrac{e^x-e^{-x}}{2} sinh(x)=2exex
asinh, acosh, atanh计算反双曲正弦值、反双曲余弦值、反双曲正切值
Re()取复数的实部Re(2+1i)=2
Im()取复数的虚部Im(2+1i)=1
Mod()取复数的模Mod(2+1i)=2.236068
Arg()取复数的弧度Arg(1+1i)=0.7853982
Conj()取复数的共轭复数Conj(1+1i)=1-1i
factorial(x) x ! x! x!factorial(4)=24
choose(n, k) C n k = n ! k ! ( n − k ) ! C_n^k=\dfrac{n!}{k!(n-k)!} Cnk=k!(nk)!n!choose(7,2)=21
polyroot(x)求解方程 ( 1 + x ) n = 0 (1+x)^n=0 (1+x)n=0的复数根,polyroot函数需要使用二项式系数作为参数polyroot(choose(2, 0:2))=-1-0i, -1+0i
gamma(x) ( x − 1 ) ! (x-1)! (x1)!gamma(4)=6
digamma(x)取gamma函数的一阶导数digamma(4)=1.256118
trigamma(x)取gamma函数的二阶导数trigamma(4)=0.283823
psigamma(x, deriv = 0)计算更高阶的gamma函数的导数目前不懂,暂时搁置
beta(a, b) γ ( a ) × γ ( b ) / γ ( a + b ) \gamma(a)\times\gamma(b)/\gamma(a+b) γ(a)×γ(b)/γ(a+b)beta(2,3)=0.08333333
lchoose、lfactorial、lgamma、lbeta求解choose、factorial、gamma、beta的对数
注:表格尾部的许多函数,笔者也没有使用过,所以以后使用过程中遇到什么问题,需进行补充和拓展!

3、常用的统计函数

函数描述
mean(x)平均值
median(x)中位数
sd(x)标准差
var(x)方差
mad(x)绝对中位数
quantile(x,probs)分位数
range(x)值域
sum(x)求和
diff(x,lag = n)滞后差分,滞后n项
min(x)最小值
max(x)最大值
scale(x,center = T,scale = T)中心化(center = T)或标准化(center = T;scale = T)
上面的这些统计函数若处理含有NA的数据,可以使用函数的na.rm=T属性,将NA删除。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪猪头拯救地球

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值