RAG | 优化思路

一、丰富能处理的数据集种类


二、细节

  1. 再输入向量化和知识库向量化环节需要用到embedding模型,需要占用显存,再写函数的时候要把模型载入和向量化分开写,防止重复载入占用大量内存
  2. 知识库向量化速度比较慢,可以用如多进程和多线程来加速数据集的向量化
  3. 多进程和多线程的时候也需要注意模型重复载入的问题
  4. 模型向量化需要耗费计算资源,可以选择将向量化后的结果记录下来,下次直接载入,节省资源

三、


四、知识库是汇总为一个文件好还是分开多个文件?

我选择了折中处理,汇集成一个文件可能存在问题:

  1. 文件过大:如果数据量非常大,单个文件可能会变得过于庞大,导致读取和处理速度变慢。
  2. 内存消耗高:一次性加载大文件可能会占用大量内存,尤其在内存有限的系统上。

在程序中逐个文件遍历可能存在问题:

  1. 代码复杂度:处理多个文件的代码逻辑较为复杂,需要更多的错误处理和异常捕获。
  2. 读取速度慢:逐个读取文件可能会增加 I/O 操作时间,影响总体速度。

但由于目前做的是商业化项目,未来终归是要处理大量数据的,所以整合是必要的;未来还需要运用多线程的技术去同时对比多个向量化后的文件,如果有多个文件的话多线程逻辑更简单;另外目前不知道数据的具体体量和个数。
暂定路线:根据文件属性相似度进行合并,设置单文件大小阈值,达到阈值后不再合并。


### Ollama RAG技术文档和实现细节 #### 关键概念和技术背景 RAG(Retrieval-Augmented Generation)是一种增强型生成方法,通过引入外部知识库来提升大型语言模型的能力[^2]。这种机制允许模型在处理特定领域问题时能够访问最新的、结构化的数据资源。 #### 架构概述 针对基于Ollama框架构建的RAG系统,整体架构可以划分为离线处理流程与在线服务两大部分: - 数据读取:从各种源获取原始资料。 - 文档拆分:将收集到的信息按照一定规则分割成更小单元以便管理和索引。 - 向量化:利用编码器转换文本片段为数值向量表示形式。 - 数据存储:保存经过预处理后的特征向量至高效检索数据库中。 - **在线部分** 用户发起请求后触发一系列操作: - 数据检索(召回):依据输入查询匹配最相似的历史记录或知识点。 - Prompt拼装:组合上下文信息形成完整的提示语句供下游组件解析。 - LLM生成:调用大模型完成最终响应内容创作过程[^3]。 #### 实现要点 为了使上述设计思路付诸实践并达到预期效果,在具体实施过程中需关注以下几个方面: - **优化文档切分策略**:合理规划文件划分标准直接影响后期搜索效率及质量[^1]。 - 提升查询召回性能:确保能快速定位关联度最高的参考资料集合。 - 整合多模态信息源:除了纯文字材料之外还可以考虑图像、音频等多种媒体类型的融合应用。 - 加强安全防护措施:防止敏感信息泄露的同时保障整个系统的稳定运行。 ```python import ollama_rag_library as olr def process_document(document_path): """Process a single document through the pipeline.""" doc = olr.read_data(document_path) chunks = olr.split_into_chunks(doc, method='optimized') vectors = olr.encode_texts(chunks) return olr.store_vectors(vectors) def retrieve_and_respond(query_string): """Retrieve relevant documents and generate response using an LLM.""" results = olr.search_index(query_string)[:5] context = " ".join([result['text'] for result in results]) prompt = f"Given this context:\n{context}\nAnswer the following question: {query_string}" answer = llm.generate(prompt=prompt).strip() return {"answer": answer} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值