mmsegmentation 训练自己的数据集

在这里插入图片描述

一. MMSegmentation是什么?

MMSegmentation 是一个基于 PyTorch 的语义分割开源工具箱,它是 OpenMMLab 项目的一部分。他与MMDetection类似,集成了各种语义分割算法,可以快速验证语义分割效果。
在这里插入图片描述

二. 环境准备

参考:https://mmsegmentation.readthedocs.io/en/latest/get_started.html#verification

1. 安装环境

# 创建虚拟环境并进入
conda create --name openmmlab python=3.8 -y
conda activate openmmlab

# 安装pytorch时,要根据自己的cuda版本进行安装,比如我的cuda版本是10.2
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=10.2 -c pytorch

# 用MIM安装MMCV
pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

# 安装MMSegmentation
git clone -b main https://github.com/open-mmlab/mmsegmentation.git
cd mmsegmentation
pip install -v -e .

2. 验证环境

# 下载config和checkpoint文件
mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

# 验证推理效果
python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

三. 数据准备

建议直接将自己的数据制作成VOC的数据格式,跟主流数据格式一致。
VOC数据下载地址:https://github.com/StoneWST/Dataset-Tool-Segmentation/
在这里插入图片描述
简单说下,JPEGImages是原始图片,SegmentationClass存储的是.png格式的标注数据,读取label数据的时候,对于单通道数据,像素值要和类别的id 相等。比如我的数’background’,‘building’在单通道的label数据中要像素值分别要为background’= 0,‘building’= 1。

四. 修改配置文件

我习惯用 python /tools/train 某个标准config.py 指令先生成一个标准的config文件,然后复制出来再改,有点麻烦,但是后边省事。而且我个人建议初学者重新生成一个config文件,而不是自己直接改标注的。

python tools/train.py configs/deeplabv3/deeplabv3-r50-d8512x51220k_voc12aug.py

运行这个指令肯定会出错,但是在work_dirs下会生成一个对应的文件夹,然后在这个文件夹下会有一个自动生成的config文件。
config文件大概长这样:
在这里插入图片描述

很多很繁杂,但是不要害怕,我们需要改动的地方并不多。记住:一数据,二类别,三训练配置
注意,我记得原始VOC还进行了数据增强,你把带有Aug对应的地方以此删掉即可。
这些地方都要改成你的数据集对应的地址。后面的val,test道理亦然。
在这里插入图片描述
修改mmseg/datasets/voc.py文件,找到voc.py(因为我们的格式是VOC),做如下修改。其中PALETTE你可以简单理解为颜色,background对应[0, 0, 0]就是黑色,依次类推。
在这里插入图片描述
./mmseg/utils/class_names.py 做类似修改:
在这里插入图片描述
注意:每次修改mmseg内部的代码后要重新编译。编译命令如下:

pip install -v -e .

开始训练模型:

CUDA_VISIBLE_DEVICES=1,2,3,4 python tools/train.py deeplabv3plus_r18-d8_4xb4-20k_myproject-512x512.py

按照教程来,你的工程就顺利训练起来了, 如下图:
在这里插入图片描述

五. 测试

由于我的任务是二分类,测试代码由demo/image_demo.py修改过来。

from argparse import ArgumentParser

from mmengine.model import revert_sync_batchnorm


if __name__ == '__main__':
    import os
    import glob
    import cv2
    import numpy as np
    config = "your_config_path.py"
    checkpoint = "your_checkpoint_path.pth"
    device = 'cuda:0'
    model = init_model(config, checkpoint, device)
    img_list = glob.glob("./images/*.jpg")
    for img in img_list:
        result = inference_model(model, img)
        result = result.pred_sem_seg.data                    # 取出分割结果
        result = np.array(result.cpu()[0,:,:])*255
        # single to 3 channels
        result = np.expand_dims(result, axis=2)
        result = np.concatenate((result, result, result), axis=-1)
        print("inference success...")
        image = cv2.imread(img)
        output_img = np.hstack([image, result])
        out_file = os.path.join("outputs", os.path.basename(img))
        cv2.imwrite(out_file, output_img)

到此,就介绍完基于MMSegmentatoin训练自己的数据集,有问题欢迎留言讨论。

### 回答1: mmsegmentation是一个基于PyTorch的开源图像分割工具箱,可以用于训练自己的数据集。以下是训练自己数据集的步骤: 1. 准备数据集:将数据集按照训练集、验证集和测试集划分,并将其转换为mmsegmentation所需的格式。 2. 配置训练参数:在mmsegmentation中,训练参数可以通过配置文件进行设置,包括模型、优化器、学习率、损失函数等。 3. 开始训练:使用mmseg的命令行工具开始训练模型,可以通过设置参数来控制训练过程。 4. 评估模型:训练完成后,可以使用mmseg的命令行工具对模型进行评估,包括计算IoU、mIoU等指标。 5. 模型预测:使用训练好的模型对新的图像进行分割预测。 需要注意的是,训练自己的数据集需要一定的计算资源和时间,同时需要对数据集进行充分的预处理和清洗,以提高模型的训练效果。 ### 回答2: mmsegmentation 是一个用于图像分割的深度学习框架,它基于 PyTorch 框架,已经被广泛应用于图像语义分割、实例分割、阴影检测等任务。其所支持的数据类型包括常用的数据集,如 PASCAL VOC、ADE20K、COCO 等。而对于我们自己的数据集,也可以通过一系列步骤来应用于 mmsegmentation 中。 首先,在准备数据时,需要将自己的数据集转化为 mmsegmentation 所支持的数据格式。具体来说,需要将数据集的图片分成训练集、验证集和测试集,同时生成一个 JSON 格式的标注文件,以供训练和测试时使用。同时,还需要对数据进行增强处理,包括大小缩放、翻转、剪裁等等。 其次,在定义模型时,需要根据自己的数据类型选择适合的模型和损失函数。这些模型和损失函数已经在 mmsegmentation 中预定义好了,同时也可以自行定义自己的模型和损失函数。例如,对于常用的图像分割任务,可以使用常见的网络模型,如 UNet、PSPNet 等。 最后,使用 mmsegmentation 进行训练和测试时,需要进行一些参数的配置。主要包括训练参数和测试参数两部分。训练参数包括训练数据集、验证数据集、批量大小、学习率、学习率策略、优化算法等等。测试参数包括测试数据集、模型路径等等。 总体而言,mmsegmentation 是一个非常灵活和易于使用的工具,我们可以使用它来训练和测试自己的数据集。同时,通过不断地调整和优化参数,我们可以得到更加准确的分割结果。 ### 回答3: mmsegmentation是一个基于PyTorch框架的图像分割工具包,可以用来实现各种图像分割算法,如FCN、U-Net、DeepLab、Mask R-CNN等。mmsegmentation提供了训练和测试的代码和模型,也支持自定义数据集训练。 下面我们将重点介绍mmsegmentation训练自己的数据集: 1. 数据集准备 在训练之前,需要准备好一个包含训练、验证和测试图像以及它们的标注的数据集数据集应该按照一定的文件结构进行组织,比如: ``` + dataset + train - image_1.jpg - image_1.png - ... + val - image_1.jpg - image_1.png - ... + test - image_1.jpg - ... ``` 其中,“train”目录包含训练图像和它们的标注,“val”目录包含验证图像和它们的标注,“test”目录包含测试图像。图像文件可以是jpg、png等格式,标注文件可以是png、mat等格式。注意,标注文件应该和图像文件保持对应,且标注像素的取值通常为0、1、2、...、n-1,表示不同的目标类别。 2. 数据集注册 注册自己的数据集需要通过继承mmcv的Dataset类来实现。自定义数据集需要实现少量方法,包括: * \_\_init\_\_:初始化方法,包括定义类别列表、文件列表等。 * \_\_len\_\_:返回数据集中样本数量。 * \_\_getitem\_\_:返回数据集中指定下标的一条数据和标注。 需要注意的是,返回的数据应该按照mmcv的格式进行处理,比如将图像和标注分别转成ndarray格式并归一化后返回。 3. 配置模型 mmsegmentation支持的模型我们可以通过它的配置文件来配置。通过制定不同的配置文件,我们可以配置不同的网络模型、优化器、学习率策略、训练参数等。对于自己的数据集,我们需要在配置文件中指定类别数、输入图像大小等相关参数。 选择具体的网络模型需要根据自己的数据集大小选择。如果数据集较小,我们可以选择较小的模型,否则可以考虑选择较大的模型,如DeepLabV3+、FCN等。 4. 开始训练数据集注册和模型配置完成后,我们可以开始训练自己的数据集。可以通过mmseg中提供的工具进行训练,比如: ``` python tools/train.py ${CONFIG_FILE} ``` 其中,${CONFIG_FILE}是指定的配置文件路径。训练过程中可以通过设置检查点、学习率、优化器等参数来调整模型的训练效果。 5. 验证和测试 训练完成后,我们可以通过mmseg提供的工具进行模型验证和测试,比如: ``` # 验证 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --eval mIoU # 测试 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --out result.pkl ``` 其中,${CHECKPOINT_FILE}是训练过程中保存的模型检查点文件路径,验证和测试的输出结果也会保存在指定路径中。在测试阶段,我们可以查看模型的输出结果,检查预测效果是否符合预期。 以上就是使用mmsegmentation训练自己的数据集的主要步骤,需要注意的是,这只是一个大致的过程,具体操作会根据自己的数据集和需求有所不同。同时也需要在训练过程中多多尝试和调整,来达到更好的训练效果。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值